
Implementation of Collectible Card Game AI
with Opponent Prediction

(Implementacja agenta do kolekcjonerskiej gry karcianej
z predykcją ruchów przeciwnika)

Łukasz Klasiński Wojciech Meller Marcin Witkowski

Praca inżynierska

Promotor: dr Jakub Kowalski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

15 lutego 2020

Abstract

In the last decade, creation of digital versions of collectable card games (CCGs)
caused a rise in those games’ popularity. Due to specificity of this genre, CCGs
are an excellent research environment for game agents with imperfect information.
In this thesis, we develop an agent with multiple strategies for Legends of Code
and Magic, a programming game created for AI research. This game is a simpli-
fied variation of popular collectable card games like The Elder Scrolls: Legends
and Hearthstone.

We examine an idea of deck prediction, with the main strategy based on the
game simulation. Presented options, based on Monte Carlo Tree Search, are com-
pared against agents presented at competitions hosted by IEEE CEC and IEEE
COG conferences.

Although tests of our approach did not yield definitive evidence to support this
idea, we think this concept is worth further research. Experimental data also show
that off-line drafting method outperforms other considered drafting agents.

W ostatniej dekadzie, kolekcjonerskie gry karciane powróciły do swojej dużej po-
pularności przez pojawienie się tego gatunku na rynku gier komputerowych. Dzięki
swej specyfice, gry te są dobrym środowiskiem do prowadzania badań nad agentami
do gier z niepełną informacją. W naszej pracy skupiliśmy się na stworzeniu kilku
strategii w ramach agenta do Legends of Code and Magic (LoCM), programistycz-
nej wariacji strategicznych gier karcianych, uproszczonej na potrzeby badań. LoCM
w dużej mierze był wzorowany na popularnych grach takich jak The Elder Scrolls:
Legends oraz Hearthstone.

W pracy rozważamy ideę przewidywania kart przeciwnika, przy czym główna
strategia polega na symulacji gry. Prezentowane implementacje bazują na metodzie
Monte Carlo Tree Search. Podczas analizy porównujemy je z agentami zaprezen-
towanymi na turniejach organizowanych w ramach konferencji IEEE CEC i IEEE
COG.

Pomimo, że przeprowadzone eksperymenty nie przyniosły ostatecznych dowo-
dów potwierdzających skuteczność tego pomysłu, uważamy, że ta idea jest warta
dalszych badań. Dane eksperymentalne pokazują również, że metoda dobierania kart
off-line jest lepsza of innych rozważanych propozycji.

Contents

1 Introduction 7

2 Analysis of existing agents 11

2.1 LoCM . 11

2.2 Hearthstone . 12

2.3 Magic: The Gathering . 12

3 Our solution 15

3.1 Drafting algorithms . 15

3.2 Battle algorithms . 16

3.3 Prediction methods . 18

4 Results 21

4.1 Conclusions . 23

A User manual 25

B Development overview 27

B.1 Project structure . 27

B.2 Course of development . 29

Bibliography 31

5

Chapter 1

Introduction

Over the years, the AI development for collectable card games (CCGs) became very
popular with research being mainly focused on Hearthstone and Magic:
The Gathering. There are many tournaments such as Hearthstone AI
Competition being held. We have taken on similar task and developed agent
for Legends of Code and Magic [1], hereinafter referred to as LoCM. This game was
created by Radosław Miernik and Jakub Kowalski with AI competition
in mind – two contests in version 1.2 of rules [2, 3] and one in 1.0 [4] were con-
ducted to date of writing this thesis.

Collectable card games

Collectable card game is a board game for multiple players, usually two, where
cards are collected and composed into decks. Those are then used to perform cer-
tain actions that change current state of the game. Popularity of CCGs is often
attributed to Magic: The Gathering that was created in the last decade of 20th
century. With creation of digital versions of CCGs, due to huge amount of possible
board states and incomplete information about opponent this genre became popular
in AI research.

The mechanics of each CCG can differ, but typically it requires players to own
their decks. Matches are played in turns, which consist of drawing cards, playing
them from hand and performing actions with those already on board. Actions modify
players’ and board’s state.

Most notable about CCGs is the amount of playable cards. For example, Magic:
The Gathering has almost 20,000 cards, Hearthstone with over 3,000 (around 1,000
of them unobtainable by players) and The Elder Scrolls: Legends with over 1,000
cards. This characteristic increases information imperfection and randomness as the
deck can be any of the cards’ subset with specified size and is often shuffled at the
beginning of a game. This often introduces a metagame as deck building becomes

7

8 CHAPTER 1. INTRODUCTION

important part of the game as a whole.

Problem description

LoCM consists of two parts, that are inspired by the Arena mode of other games.

• Draft Phase

During this part of the game, agent has to choose one out of three cards in
30 turns creating its own deck. Opponent is given the same choices, but its
actions are hidden.

• Battle Phase

The goal of this part is to reduce opponent’s health to zero points or below
using cards obtained during draft phase.

Cards are split into two types. Creature cards can be summoned to board, which
itself is split into two lanes. Summoned creatures can attack opponent or opponent’s
creatures on the same lane. Each creature has certain statistics, including attack,
defence, cost points, and passive abilities. Those abilities alter default behaviour, i.e.
breakthrough applies excess damage dealt to opponent, charge creature can attack
in the same turn it was summoned, drain heals player for amount of damage dealt,
guard has to be killed before player or other creature in the same lane, lethal kills
target if any damage is dealt, ward protects creature from the next attack with non-
zero damage.

Item cards can modify attack or defence points of their targets and alter their
abilities. Summoning creatures or using items can also modify each player’s health
points and add extra cards to their hand.

As LoCM consists of two logical parts, we can create separate agents for both
of them:

• Drafting agent

Since number of cards is limited to a relatively small number (160), we can
differentiate two strategies – either calculating cards’ values off-line and picking
them through resulting order or choosing cards on-line by evaluating their
worth given current state of the deck.

• Playing agent

Keeping in mind drafting mechanics, we wanted to take advantage of infor-
mation we are provided to predict opponent’s deck. As such, we tried to de-
terminize opponent’s state, and use perfect-information state algorithm like
Monte Carlo Tree Search.

9

Furthermore, agents have limited time to perform their moves. First turn
of draft and battle phase has one second before timeout and the remaining turns
have 200ms each. If agent does not make a move on time, it loses by default. Due
to this constraint, agents have to perform more aggressive searching for optimal
action. It is also one of the reasons for us to pick faster language such as Rust.

For further information and more detailed rules description in version 1.2, please
refer to the LoCM project page [5].

Chapter 2

Analysis of existing agents

In an attempt to prepare for development, we have analysed few existing agents
for this game genre. We focused mainly on AI implementations showcased in contests
and journals.

2.1 LoCM

Since release of Legends of Code and Magic, two competitions were held and multiple
agents were presented, most notably Coac that won both of them.

The base algorithm of this agent is min-max’s variation of depth three with alpha-
beta pruning. For every action in current state, min-max is evaluated for up to three
actions per chain. Then, for each sub-state, min-max of depth one is executed for en-
emy player. First action with maximum score is then added to current chain of ac-
tions. This process is repeated for as long as possible without time-outing whilst
there are no more valid moves. If there are any unused cards on board, all of them
will attack opponent. In the draft phase, Coac uses hard-coded tables of best cards,
constrained by minimal amount of each type. As second player has always one mana
more, there are two sets of weights exploiting this fact.

Another agent with completely different approach is UJIAgent3. Instead of some
kind of game-tree traversal, an on-line evolutionary algorithm was used. Firstly, all
of possible actions are generated. Then, until the end of the round, random permu-
tations of possible actions are taken under consideration, for one with the highest
score being performed by the AI. For draft phase, authors used Coac’s drafting order
with extended constraints.

Most of the other agents are either using min-max with depth of two or a greedy
algorithm with hand-crafted heuristic function. Almost all of them are using static
drafting strategy with presorted cards, based on play-outs between top agents
with the highest win-ratio. Majority of them have implemented routine checking

11

12 CHAPTER 2. ANALYSIS OF EXISTING AGENTS

if they can kill an opponent in current round, fall-backing to their default search
algorithm.

As drafting phase of Legends of Code and Magic presents unique challenge
compared to other CCGs, this subject is further explored in LoCM creators’ work [6].
In this paper the authors propose genetic algorithm that uses a concept of an active
gene to adjust choices to partially created deck. In their tests, three variants of this
method outperformed non-evolutionary approaches and evolutionary baseline.

2.2 Hearthstone

AI development in Hearthstone is pretty advanced at the moment. Since it is well-
known in the Hearthstone community that the in-game AI is pretty bad (no look-
ahead; kills its own creatures, sometimes even itself) the desire for better agents
is pretty high. Considering its complexity and available tools [7], this game is great
for research about games with partial information [8]. As deck-building is hard
and human players rarely use custom-made decks, most Hearthstone agents are
assuming there is some set of pre-made decks.

As a result, and the fact that drafting mode in game is not for free, gaming
agents are made and trained to play with single deck. It makes a big difference in
comparison to LoCM, because agent is much less dependent on drafting and can
easily guess what deck the opponent is using just by seeing first few cards. It
makes predictions and creating good neural networks for AI more viable than other
approaches.

Since drafting is limited to chosen set of cards (only from rotating formats),
players use win-ratio statistics from the web of given cards to calculate their chances
of winning. After that, mana curve, synergies and number of copies in deck are taken
into account to decide what card is the best. Many players use this whilst playing
Arena mode as an in-game add-on, that shows them calculated scores for each card.
This helps them to decide best pick from three cards they are offered.

In case of AI’s implementation, we found out that in almost every more relevant
paper, agents use some variant of MCTS in conjunction with chosen reinforcement
learning technique [9]. For deck-building, evolutionary algorithms [10] were most
prominent.

2.3 Magic: The Gathering

Another interesting card game we stumbled upon whilst doing our research was
Magic: The Gathering. It proved to be huge challenge to write good agent for this
game, because of massive number of playable cards, as well as big variety of their

2.3. MAGIC: THE GATHERING 13

types and how they influence state of the game. For example, there are possible
recursive actions, ways to play infinite number of cards and it was even proven that
this game is Turing Complete [11]. Because of that, creating agent proved to be
impossible using standard methods and workarounds were needed.

In C.D. Ward and Peter Cowling’s work about card selection using Monte Carlo
search [12], authors had to limit agent to play only single, pre-constructed deck
from cards permitted by standard format [13], which allows only ≈ 2, 000 cards.
To restrict huge branching factor of the game, they split agent into two parts. First
part consists of MCTS algorithm and is used to decide what cards, and in which
order, are played from hand, which is limited by simple rules (e.g. if you have given
card on hand, play it first). Second part is used in attack phase of the game,
which in contrast to LoCM allows only damaging an opponent. After declaration
on which creatures will attack, opponent has to decide how to block them. Authors
used simple greedy approach that generates all possible moves and picks one which
would leave board state to its favour. This combination gained the best results
in comparison to the other agents they have implemented, but they believed there
is still room for improvement.

Chapter 3

Our solution

Firstly, we have implemented a basic game engine, along with multiple routines
allowing us to communicate with referee. Then, we started working on abstraction
that would later allow us to write agents, ignoring any I/O or other things that
are not directly related to AI. Having that done, we moved to creating simple agents
that would allow us to test created system. Lastly, we wrote unit tests for already
existing code. From this point, we were ready to start thinking about more advanced
solution.

3.1 Drafting algorithms

Random draft

This was the simplest drafting agent, used mostly as a reference whenever other
drafting methods are effective.

Endgame Evaluator (EEval) draft

The idea behind this algorithm is based on MCTS. It provides heuristic that calcu-
lates value of the cards by simply summing its health, attack, card draw, inflicted
damage and in case of creatures – abilities with weights (e.g. charge has priority 1
and guard 3). At first, we decide 3 cards via the heuristic function to provide base
deck for simulations. After that, we pick cards by playing random game endings
with each of them in deck. Number of games is limited by provided timeout limit.

Each card has (timeout/3)−delta time to play games which is enough to make
about 2, 000 simulations. The game endings are prepared by randomising all states
of board – number of cards in both players hands, random number of creatures
from deck on the board and random health. Other than that, we create random
deck for opponent from cards that were seen in draft at given iteration. Actions

15

16 CHAPTER 3. OUR SOLUTION

are played randomly and then the result is selected based on the score. Score
is calculated by increasing it in case of win and decreasing after lose, and then
normalised between 0 and 1. This approach lets us to try each card in many possible
board states and draw the one that fits best.

Off-line draft

Since current number of cards is rather low (160), it is possible to quite easily
calculate value for each of them. Then, during the draft phase, the card is chosen
based on their weights. At the beginning we have used ClosetAI’s weights to test
this kind of drafting method. Later, we used harmony search [14] to improve sets
of weights provided in main LoCM repository, as they were trained and optimised
for older version of rules with single lane. Search started with four Coac’s sets, one
ClosetAI’s and 10 random ones, for which 1, 500 improvisations were run. Harmonic
memory considering rate was set to 0.75, pitch adjusting rate to 0.5 and maximum
pitch adjustment index to 10. We later refer to those weights as HS Weights.

3.2 Battle algorithms

Aggressive agent

This algorithm is pretty simple: consider all currently possible actions and pick one
that would deal the most damage, simulate the action and repeat this process whilst
an action can be made. Particularly, it means that agent tries to attack the oppo-
nent, eliminate creatures with guard ability and use or summon cards as to optimise
potential damage per mana point.

MCTS agent

Our next approach was to write an agent using MCTS algorithm with UCT [15] tree
policy. We represented single actions as edges and resulting states as nodes in our
graph.

Firstly, we implemented simple heuristic that was looking only on difference be-
tween players’ health and amount of cards on the board. After some trail and error
with modifying heuristic, we were able to win about 40% of games against Base-
line, which was not that satisfying. Whilst taking closer look at AI decisions, we
have discovered that in situations when agent could clearly win the game by simply
attacking opponent with all of its creatures, it was failing to do so. Our first attempt
at addressing that issue was increasing amount of fully opened branches in tree. We
did this by modifying MCTS algorithm to always expand selected node, even if it
was not visited before. That yielded a score increase of 10 p.p., but did not actually

3.2. BATTLE ALGORITHMS 17

resolve the issue. Then, we tried to penalise agent in situations where it could kill
the opponent, but that solution was not enough in all the cases. Ultimately, we
created routine that manually checks if we can kill enemy player with our accessible
resources. In conjunction with altered heuristic we were able to beat Baseline 80%

of the times.

Weighted MCTS agent

As hand-crafted heuristic functions are in most cases sub-optimal, we tried to avoid
this by making use of evolutionary programming. We used our basic MCTS agent
as a base, and then started thinking about better board state evaluation. First thing
that came to our mind was creating a function that could better describe usefulness
of cards that are already on the board. For this we have created a matrix W of size
8 × 8, which was representing weights for card’s attack, defence and its abilities.
Then, the score for single card is

∑
j

∑
iWjici, where c is a vector consisting of card’s

attack, defence and presence or absence of possible abilities. Finally, we used that
function to evaluate every card on the board by adding result if card belonged to AI
and subtracting otherwise. We chose matrix instead of simple vector, because we
wanted to have a way to express relationships between different attributes of card,
e.g. we do not need to have high amount of damage if we already have lethal – in
this scenario ward or high amount of defence would be much more valuable.

After we had working agent, we have begun the training. We implemented
genetic algorithm and run it with population size 150 and mutation chance of 2%.
After each generation, we were crossing 10 best individuals, then adding 5 new ran-
dom phenotypes. As for mutation, we were altering randomly chosen gene with new
random value. For fitness function we have used percentage of how many games
given individual won against specified AI. For this we used AntiSquid, Coac and self-
play with currently the best individual. After all, we did not get any good results
with this method, mainly due to limited amount of generations (100) we were able
to evaluate. Because of that and high amount of parameters, this method gained no
performance improvement of our agent.

Predict MCTS agent

After being done with the plain MCTS, we started to think about how to predict
opponent’s moves, and thus, to be able to simulate more than only actions performed
by already summoned creatures. By exploring couple of ideas, we implemented
simple routine which filters out cards that agent already seen from all 3-tuples known
after Draft phase. Then, during MCTS play-out we are sampling with uniform
distribution subset of cards that lasted after filtration. The main idea behind this
stochastic approach is that if we run it enough times per single state evaluation, we
will get a more genuine description of how much impact given action will have. This

18 CHAPTER 3. OUR SOLUTION

method proved to be somewhat effective as it generally increased win-rate of our
agent by about 10 p.p. To tune heuristic, we again used genetic algorithm – this
time with fewer parameters and hand-crafted relationships between abilities. Using
this method, we were able to have about 70% win-rate against AntiSquid and 35%

against Coac. Overall, it increased win-ratio of our agent by another ≈ 10 p.p.

R.A.V.E MCTS agent

This agent works similarly to previous method, but this time with implemented
AMAF heuristic [16]. For β factor we used simple linear smoothing, that is
max (0, smoothing−visitssmoothing), with smoothing set to 15. Like in previous approach, we
fine-tuned before obtained weights using genetic algorithm. This little upgrade
in conjunction with weighted predictor yielded 85% win-ratio against AntiSquid
and 45% in opposition to Coac.

3.3 Prediction methods

Empty

As we wanted to test if our agents work, we created predictor which always returns
empty deck.

Simple

Since we did not want to take too many resources from MCTS, we created a simple
deck predictor that keeps cards already played by an opponent. When asked for pre-
diction, it checks what cards must have been picked by iterating over all tuples, then
chooses rest at random.

Weighted Simple

This approach is similar to the previous one: we are still sampling cards from re-
maining tuples, but instead of all cards having exactly same chance for being chosen,
their probability is based on weights from ClosetAI.

Same-as-ours

Another approach is based on Simple method, but it assumes that our opponent
made the same choices as we did whilst drafting. Firstly, we pick cards that were
seen and then choose the rest using same method as our agent did.

3.3. PREDICTION METHODS 19

ClosetAI

Because most of the other AIs in LoCM competition are using some kind of off-line,
weights based drafting method, we tried out an idea to base our prediction for MCTS
using unchanged ClosetAI’s draft order.

Chapter 4

Results

All statistical data presented below is a result of 500 games per pair of our agent
and one out of four others – AntiSquid, Baseline1, Baseline2, Coac. We tried
them using all possible drafting methods and in case of Predict MCTS agent,
using different prediction functions. The best result from each batch is bolded.

Drafting method AntiSquid Baseline1 Baseline2 Coac

Random 25.20% 53.40% 39.40% 4.80%

EEval 26.00% 55.20% 41.80% 6.43%

ClosetAI 31.60% 58.80% 36.20% 4.06%

HS Weights 29.40% 67.00% 59.40% 8.00%

Table 4.1: Battle agent: Random

Drafting method AntiSquid Baseline1 Baseline2 Coac

Random 39.20% 63.40% 51.20% 4.80%

EEval 46.69% 66.40% 54.20% 7.61%

ClosetAI 51.40% 70.80% 55.00% 7.69%

HS Weights 48.70% 73.80% 61.80% 9.80%

Table 4.2: Battle agent: Aggressive

Drafting method AntiSquid Baseline1 Baseline2 Coac

Random 67.93% 86.44% 70.53% 12.47%

EEval 62.39% 89.46% 76.51% 15.23%

ClosetAI 70.80% 86.45% 68.74% 15.27%

HS Weights 73.09% 91.64% 91.64% 23.12%

Table 4.3: Battle agent: Basic MCTS

21

22 CHAPTER 4. RESULTS

Drafting method AntiSquid Baseline1 Baseline2 Coac

Random 82.44% 97.73% 92.24 % 37.99%

EEval 78.17% 96.42% 90.85% 38.47%

ClosetAI 88.26% 97.77% 96.76% 41.67%

HS Weights 86.78% 98.16% 96.92% 52.68%

Table 4.4: Battle agent: Predict MCTS
Prediction method: Empty

Drafting method AntiSquid Baseline1 Baseline2 Coac

Random 75.93% 95.29% 90.73% 30.24%

EEval 78.54% 94.88% 91.51% 32.17%

ClosetAI 86.56% 96.98% 94.97% 37.00%

HS Weights 82.57% 96.65% 97.13% 50.72%

Table 4.5: Battle agent: Predict MCTS
Prediction method: Simple

Drafting method AntiSquid Baseline1 Baseline2 Coac

Random 75.20% 94.03% 91.96% 34.22%

EEval 82.70% 93.80% 90.55% 35.39%

ClosetAI 86.64% 97.78% 96.75% 36.66%

HS Weights 83.50% 97.11% 97.77% 47.22%

Table 4.6: Battle agent: Predict MCTS
Prediction method: Same

Drafting method AntiSquid Baseline1 Baseline2 Coac

Random 78.73% 95.66% 94.66% 34.49%

EEval 78.54% 93.15% 89.51% 34.69%

ClosetAI 84.85% 96.96% 94.93% 35.54%

HS Weights 83.97% 97.15% 96.16% 49.06%

Table 4.7: Battle agent: Predict MCTS
Prediction method: ClosetAI

4.1. CONCLUSIONS 23

Drafting method AntiSquid Baseline1 Baseline2 Coac

Random 77.00% 94.42% 90.48% 33.53%

EEval 76.92% 93.30% 90.14% 37.16%

ClosetAI 86.23% 96.37% 95.34% 35.90%

HS Weights 82.05% 95.98% 95.95% 49.49%

Table 4.8: Battle agent: Predict MCTS
Prediction method: Weighted Simple

4.1 Conclusions

Analysing the above data, we concluded that our prediction methods seem to make
smaller improvements than we expected, but we are not excluding that usage of more
sophisticated algorithms to determine opponent’s state may provide better results.
Since agent with prediction was not that far off from best results, we believe they in-
troduce too much noise to the decision-making. Possibly, some combination of empty
during the early and the mid-game with simple at the late-game could be an im-
provement, since predictors become better with each turn as we see more cards
played by an opponent.

Off-line drafting, using our improved set of weights yielded much better results
than other methods. On average, it increased win-ratio by about 6.5 p.p. This
method proved to be superior to on-line drafting solutions. With greater randomi-
sation parameter and more time for training, we think it could be further improved.
Our best agent turned out to be Predict MCTS using Empty predictor, as we can
see in Table 4.4.

We believe that implementations based on MCTS could perform better with less
conservative time constraints. Overall, we are pleased with the results.

Appendix A

User manual

This program is meant to be run by the LoCM referee with another agent as an op-
ponent, but may also rival itself. It will expect to read input and print output
as described by LoCM rules [5]. Detailed usage of referee can be found on the
LoCM project website [17].

Installation requires Rust tool-chain at least in version 1.42.0-nightly, it can
be installed by following steps listed on rust-lang website [18].

To build agent, go to agent directory, run cargo +nightly build --release
and then executable file will be available in agent/target/release named as agent.

Our agent provides command line interface that follows GNU guidelines. All
available options are listed with usage of --help argument. The main functionality
is the ability to choose the approach for draft and battle phase. Default options
are random approaches for each phase and time constraints as described in the
rules.

Examples

agent --draft=eeval --battle=predict_mcts --first-draft-response=500 \

--first-battle-response=500 --turn-response=100

This will pick cards based on randomised simulations and choose actions using
Monte Carlo Tree Search with prediction of opponent’s state and behaviour under
given time constraints in milliseconds.

agent --draft=random --battle=aggressive

This will pick random cards and try to deal most damage in greedy fashion
during battle phase under default time constraints.

25

26 APPENDIX A. USER MANUAL

agent -d external_weights -b external_predict_mcts -p empty

Given DRAFT_WEIGHTS and WEIGHTS environmental variables contain paths to
files with weights, this will choose cards and evaluate card’s value based on provided
weights.

java -jar LoCM.jar \

-p1 "agent -b aggressive" \

-p2 "agent -d eeval -b predict_mcts" \

-s

Provided LoCM’s referee written in java, this will create service to watch the
game in a web browser accessible under http://localhost:8888/.

http://localhost:8888/

Appendix B

Development overview

Agent is written in Rust language using nightly features. Rust was chosen because
of its performance, reliability and productivity. Due to concept of ownership, Rust
requires no run-time environment or garbage collection. Its ownership and type
system guarantee memory safety and prevent occurrence of some types of bugs.
Provided tool-chain and unofficial tools increases productivity for example by auto
formatting code or providing hints to make code more idiomatic. Usage of external
code is simplified by requiring to just add packages, called crates, to the configuration
file. Those crates, in most cases, come with well-made documentation in uniform
style.

B.1 Project structure

Program is split mainly into seven modules and the main file.

• algorithms

In our agents we use algorithms implemented in this module. These implemen-
tations are generic and therefore are not tied to any particular agent or game.
Available algorithm implementations are AlphaBeta and two variations of
MCTS.

• battle

All of our battle agents and some helping functions are part of battle module.
Six approaches (aggressive, basic mcts, minmax, external predict mcts
and predict mcts, random, weighted mcts) are separated into sub-modules
and implement generic trait that makes them interchangeable. Agents can hold
state and each turn they create chain of actions given game state in a form
of Player and Opponent structures, predictor and available time after which
occurs timeout.

27

28 APPENDIX B. DEVELOPMENT OVERVIEW

• draft

This module mainly contains eeval, closetai, hs and external weights
agents for drafting phase, but also includes random agent. Similarly to solution
in battle module, drafting agents implement genetic trait that allows inner
state and provides method to pick card given game state and available time
for decision.

• predictors

In more advanced battle agents, we use prediction of opponent’s deck. For this
purpose module predictors provides five approaches (closetai, empty, same,
simple, weighted simple) and similarly to agents in battle and draft mod-
ules, predictors implement trait that allows updating information about oppo-
nent’s actions and method that returns predicted deck.

• main

This file contains main function that parses command line arguments with help
of options module. Then based on those options runs loops for draft and bat-
tle phases, which are detached to separate generic functions.

• model

This module contains all the structures needed to store state and simulate
game. Game state is represented by Player and Opponent structures which
contain specific information known about that side and BasePlayer structure
that represents player more uniformly. Action simulation and listing of valid
actions are performed on two instances of BasePlayer representing players. It
is useful in exploring in-depth possible action of both players.

• options

In this file we took advantage of structopt crate and defined options accessi-
ble through command line interface. Moreover, this struct provides methods
that wrap functions from main file to provide types and values as specified
in arguments.

• parser

Parsing input is quite trivial as a result of simple scheme described in LoCM
rules. This module packs input into structures that will be used in loop of each
phase to update agent’s knowledge of the game state.

B.2. COURSE OF DEVELOPMENT 29

B.2 Course of development

Development started with Marcin creating initial project structure with beginning
of the parsing and game state struct (i.a. Board, Card, Player). He also managed
git repository, created scripts to force proper formatting (with rustfmt) and ensure
that tests passed.

Wojciech finished the parsing module and added unit tests to cover parsing.
Next step was to create random drafting agent with simple main loop to test already
created code with referee.

Before creating any battle agent, Łukasz created function to list all legal actions
given game state. This function was helpful writing battle agents and was covered
by unit tests.

Our first battle agent was made by Wojciech, it simply returned shuffled vector
of valid actions at the begging of the turn. At this point he also added structure
to represent opponent’s state and methods to update game state every turn.

For current representation of the game state Łukasz created simulation, given
an action the game state is updated. Then Marcin implemented generic Monte Carlo
Tree Search. That implementation and game simulation were first steps to create
more advanced agents.

Using existing simulation, Łukasz rewrote random battle agent to pick one ac-
tion at random and update game state in a loop until no more actions were possible.
This helped test updating and simulating game state.

Wojciech refactored random battle agent and with some testing we spotted
some inaccuracies in our implementation of the game, so he rewrote simulation
of actions following source code of LoCM. As we needed to simulate actions in both
ways he took Board and common values form Player and Opponent, then created
BasePlayer struct, from this point player and opponent’s structures hold specific
values to them. After that, Wojciech implemented simple greedy agent to perform
aggressive chains of actions. As we had multiple agents, we needed a way to choose
which one should run, so he added command line interface.

As MCTS was our main idea from the beginning, Łukasz implemented draft
agent based on similar principle that we called eeval (Endgame Evaluator). He also
added methods to perform game logic between turns, as we would have needed that
for simulating games.

Once our project was ready to simulate game, Marcin implemented basic mcts
battle agent and two agents to generate opponent’s cards on hand (empty and simple
predictors).

Having our first non-trivial agent, Łukasz worked on improving heuristic
and Wojciech added support for time constraints as MCTS yields better results

30 APPENDIX B. DEVELOPMENT OVERVIEW

the longer it runs, but also has to stop before timeout.

After creation of basic agent with MCTS, Marcin implemented predict mcts
battle agent and generic AlphaBeta algorithm. He also added auto-generation
for cards list from file.

Due to addition of new agents, Łukasz reworked heuristics. As we had multiple
predictors, Wojciech added support to choose them with command line interface.
Wojciech also added function that tries in greedy fashion generate winning action
chain, which is used to check if simple solution exists before running MCTS.

Marcin created same predictor, draft agent mimicking ClosetAI and two battle
agents based on mcts (weighted mcts and rave mcts). He also implemented an-
other generic algorithm, MinMax. Based on closetai draft agent, Łukasz created
predictor.

At this point, we started writing this paper and generating proper statistical
data. Marcin rewrote heuristics for basic and prediction based MCTS battle agents
and created weighted predictor. Around that time, Marcin and Łukasz started
training weights, so Marcin added version of predict mcts and off-line drafting
that takes trained sets from a file. He also created hs weights drafting agent with
our final set.

Example

Example usage with LoCM Nim based referee [19]:

Tester --referee="java -jar LoCM.jar" \

--player1="agent -d closetai -b predict_mcts" \

--player2="agent -d eeval -b basic_mcts" \

--games=2048 \

--threads=16 \

--plain=true

Keep in mind that if the given amount of threads is too big, it is highly pos-
sible that our agent will start to lose games by default because of timeouts. We
implemented our more demanding evaluation function in such a way, that they run
till certain amount of time passes, and they have only few ms of room. When threads
are overloaded, they often fail to finish in that short time window. This is why it
is recommended to run at most the same amount of threads as number of cores
on testing machine. Since our algorithm evaluates moves for as long as possible,
single game will run for about three to five seconds on any configuration.

Bibliography

[1] Jakub Kowalski and Radosław Miernik. Legends of Code and Magic, 2020.
https://jakubkowalski.tech/Projects/LOCM/.

[2] Legends of Code and Magic CEC June 2019. https://github.

com/acatai/Strategy-Card-Game-AI-Competition/tree/master/

contest-2019-06-CEC.

[3] Legends of Code and Magic COG August 2019. https://github.

com/acatai/Strategy-Card-Game-AI-Competition/tree/master/

contest-2019-08-COG.

[4] CodinGame Legends of Code and Magic contest. https://www.codingame.
com/leaderboards/contests/legends-of-code-and-magic-marathon/

global.

[5] Rules of Legends of Code and Magic. https://github.com/acatai/

Strategy-Card-Game-AI-Competition/blob/master/GAME-RULES.md.

[6] Jakub Kowalski and Radosław Miernik. Evolutionary Approach to Collectible
Card Game Arena Deckbuilding using Active Genes, 2020.

[7] Dockhorn, Alexander and Mostaghim, Sanaz. Introducing the Hearthstone-AI
Competition, 05 2019.

[8] Amy K. Hoover and Julian Togelius and Scott Lee and Fernando de Mesentier
Silva. The Many AI Challenges of Hearthstone, 2019.

[9] Maciej Świechowski, Tomasz Tajmajer, and Andrzej Janusz. Improving hearth-
stone ai by combining mcts and supervised learning algorithms, 2018.

[10] Garćıa-Sánchez, Pablo and Tonda, Alberto and Squillero, Giovanni and Mora,
Antonio and Merelo Guervós, Juan. Evolutionary Deckbuilding in HearthStone.
09 2016.

[11] Alex Churchill, Stella Biderman, and Austin Herrick. Magic: The Gathering is
Turing Complete, 2019.

[12] C.D. Ward and Peter Cowling. Monte Carlo search applied to card selection in
Magic: The Gathering, 10 2009.

31

https://jakubkowalski.tech/Projects/LOCM/
https://github.com/acatai/Strategy-Card-Game-AI-Competition/tree/master/contest-2019-06-CEC
https://github.com/acatai/Strategy-Card-Game-AI-Competition/tree/master/contest-2019-06-CEC
https://github.com/acatai/Strategy-Card-Game-AI-Competition/tree/master/contest-2019-06-CEC
https://github.com/acatai/Strategy-Card-Game-AI-Competition/tree/master/contest-2019-08-COG
https://github.com/acatai/Strategy-Card-Game-AI-Competition/tree/master/contest-2019-08-COG
https://github.com/acatai/Strategy-Card-Game-AI-Competition/tree/master/contest-2019-08-COG
https://www.codingame.com/leaderboards/contests/legends-of-code-and-magic-marathon/global
https://www.codingame.com/leaderboards/contests/legends-of-code-and-magic-marathon/global
https://www.codingame.com/leaderboards/contests/legends-of-code-and-magic-marathon/global
https://github.com/acatai/Strategy-Card-Game-AI-Competition/blob/master/GAME-RULES.md
https://github.com/acatai/Strategy-Card-Game-AI-Competition/blob/master/GAME-RULES.md

32 BIBLIOGRAPHY

[13] Magic the Gathering Standard game rulings. https://magic.wizards.com/
en/content/standard-formats-magic-gathering.

[14] Zong Woo Geem, Joong Kim, and G.V. Loganathan. A New Heuristic Opti-
mization Algorithm: Harmony Search. Simulation, 76:60–68, 02 2001.

[15] Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In
Proceedings of the 17th European Conference on Machine Learning, ECML’06,
page 282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[16] Sylvain Gelly and David Silver. Monte-Carlo tree search and rapid action value
estimation in computer Go. Artificial Intelligence, 175(11):1856 – 1875, 2011.

[17] Repository of Legends of Code and Magic. https://github.com/acatai/
Strategy-Card-Game-AI-Competition.

[18] Rust programming language - recommended installation steps. https://www.
rust-lang.org/tools/install.

[19] Nim based Legends of Code and Magic referee. https://github.com/acatai/
Strategy-Card-Game-AI-Competition/tree/master/referee-nim.

https://magic.wizards.com/en/content/standard-formats-magic-gathering
https://magic.wizards.com/en/content/standard-formats-magic-gathering
https://github.com/acatai/Strategy-Card-Game-AI-Competition
https://github.com/acatai/Strategy-Card-Game-AI-Competition
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://github.com/acatai/Strategy-Card-Game-AI-Competition/tree/master/referee-nim
https://github.com/acatai/Strategy-Card-Game-AI-Competition/tree/master/referee-nim

	Introduction
	Analysis of existing agents
	LoCM
	Hearthstone
	Magic: The Gathering

	Our solution
	Drafting algorithms
	Battle algorithms
	Prediction methods

	Results
	Conclusions

	User manual
	Development overview
	Project structure
	Course of development

	Bibliography

