
Designing a Template-Based 
Map Generator for 
Heroes of Might & Magic III
Authors: Dawid Skowronek, Grzegorz Kodrzycki
Supervisors: dr Jakub Kowalski, mgr inż. Radosław Miernik



Aim of the thesis

The aim of this thesis was to create a fully functional map generator for Heroes of 
Might & Magic III. Additionally, the thesis presents a possible solution for testing 

maps with the available AI built into the game.



GUI of HOMM3





Key concepts

zones

towns

terrains

mines

special buildings

monsters

obstacles

collectibles



Gus Smedstad

● Zone Placement: Circles, arbitrary grid, “shaking box”, water. 
● Zone Polishing: Voronoi, fractal randomization.
● Obstacles: Square states, “reverse building”, reachability, landmarks task.
● Buildings: Density, placement order.
● Connections: Borders, junction zones, water connections, special connections.
● Guards: Rating and item value, alignment, number of guards. 
● Treasures: Classification, dwellings, variations, blocks. 
● Aesthetics: Obstacle pools, rivers for water mills etc.



VCMI

● Fundamentals: Undirected graph, water zone.
● Modifiers: Phased filling, dependency management, topological order.
● Zone Placement: Dijkstra, Fruchterman-Reingold, Penrose tiling.
● Connections: Guards, roads, gates, water handling.
● Fractalization: Free paths, junction exclusion.
● Treasures: Distance-based placement, value ranges.
● Obstacles: Blocking, biomes, space filling.
● Template: example VCMI template 

https://github.com/vcmi/vcmi/blob/develop/docs/modders/Random_Map_Template.md


The template is in JSON format, allowing for easy readability and modification. the 
template is divided into smaller components.

Template description



General map information



Zone information



Connection information



Map Generation

Map generation is quite a complex task to tackle. Dividing it into smaller parts

allows for code modularization, making the work a bit easier.



Map Generation

● Zone generation
● Town placement
● Border and Connection generation
● Object placement
● Road placement
● Guard placement
● Noise placement



Map Generation

● Zone generation
● Town placement
● Border and Connection generation
● Object placement
● Road placement
● Guard placement
● Noise placement



Zone generation
First, we need to find N such N² ≥ #Zones. Then, we create an N × N grid.
Starting from the first zone, we place it on a random grid edge. Finally, we
place zones in each cell while maximizing their distances.



Zone generation
The final step is to assign the corresponding terrain 
type to each tile. In the first version, we assigned 
terrain from the closest zone. Another approach is 
to generate Penrose Tiling and assign vertices from 
this tiling to the nearest zone (therefore, the 
desired terrain type), then assign each pixel to the 
closest vertex.

without 
Penrose

with
Penrose



Map Generation

● Zone generation
● Town placement
● Border and Connection generation
● Object placement
● Road placement
● Guard placement
● Noise placement



Town placement 

The position for each of them is set to the center 
of mass of its respective zone. It is crucial to 
place towns early in the process, as subsequent 
steps heavily depend on towns’ positions.



Map Generation

● Zone generation
● Town placement
● Border and Connection generation
● Object placement
● Road placement
● Guard placement
● Noise placement



Border and connection of zones generation

wide narrow monolith



Border and connection of zones generation

Generating borders and finding connections is done in a few steps:

1. Determining zone borders

2. Finding connection points

3. Setting wide connections



Border and connection of zones generation



Map Generation

● Zone generation
● Town placement
● Border and Connection generation
● Object placement
● Road placement
● Guard placement
● Noise placement



Object placement

We classify mines, collectibles, and special 
buildings as objects. We begin with the 
placement of mines, followed by collectibles 
and special buildings.

1. Mines placement
a. Placing essential mines
b. Placing the minimum count of 

specified mines
c. Placing random mines to hit 

maxNumberOfMines



Object placement

2. Treasures placement
a. Resources near mines
b. Treasure block
c. Treasure buildings



Map Generation

● Zone generation
● Town placement
● Border and Connection generation
● Object placement
● Road placement
● Guard placement
● Noise placement



Road placement

We run Dijkstra’s algorithm again, ensuring 
that we will step on free tiles. We may choose 
ones just next to objects, but this is not 
obligatory.

Once we generate the entire path, we unmark 
necessary tiles if they were marked as borders. 
Additionally, if the path is not from a town, we 
find a tile surrounded by obstacles on any axis 
and designate it as a guardian tile, where we 
will place a guard later in the guard placement 
phase.



Map Generation

● Zone generation
● Town placement
● Border and Connection generation
● Object placement
● Road placement
● Guard placement
● Noise placement



 Guard placement 

In previous steps, we marked tiles that should 
have a guard on them. We consider
two distinct types of guard:

• Gate guards
• Treasures/mines guards

Each type has a different difficulty scale, 
determining creatures’ level, quantity,
disposition, and whether they can flee or grow 
in numbers.



Map Generation

● Zone generation
● Town placement
● Border and Connection generation
● Object placement
● Road placement
● Guard placement
● Noise placement



Noise placement

We generate Perlin Noise on an N × N grid. We are generating noise in the [−1, 1] 
range. To get the binary output, we are taking only values which are greater than 0. 

The next step is to apply this noise to free tiles. Then, we mark tiles that must 
remain reachable (e.g., roads, the bottom line of buildings).



Noise placement

The next step is running Dijkstra’s algorithm to calculate a minimal number of

obstacles from each town to be in a specific tile using the following rules:

• if the tile is free: maintain the number from the previous tile,

• if the tile is occupied: treat it as an obstacle,

• if the tile was free and now is occupied: add weights after moving to it (1 for 
orthogonal movement, 2 for diagonal movement).



Noise placement





Fairness of the Map



Conclusion
We successfully created the generator, but we believe the topic is much more 
complex and that several other issues could be addressed.

What is missing in our generator:
● underground levels
● water zones

What we could improve:
● placement of objects
● change how we control economy of zone


