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Abstract

Writing game agents has always been an important field of Artificial Intelligence research.
However, the most successful agents for particular games (like chess) heavily utilize hard-
coded human knowledge about the game (like chess openings, optimal search strategies, and
heuristic game state evaluation functions). This knowledge can be hardcoded so deeply, that
the agent’s architecture or other significant components are completely unreusable in the
context of other games.

To encourage research in (and to measure the quality of) the general solutions to game-
agent related problems, the General Game Playing (GGP) discipline was proposed. In GGP,
an agent is expected to accept any game rules expressible by a formal language and learn
to play it by itself. The most common example of the GGP domain is Stanford General
Game Playing. It uses Game Description Language (GDL) based on the first order logic for
expressing game rules.

One popular approach to GGP player construction is the Monte Carlo Tree Search
(MCTS) algorithm, which utilizes the random game playouts (game simulations with random
moves) to heuristically estimate the value of game state favourness for a given player. As in
any other Monte Carlo method, high number of random samples (game simulations in this
case) has a crucial influence on the algorithm’s performance. The algorithm’s component
responsible for game simulations is called a reasoner.

The Field Programmable Gate Arrays (FPGAs) are chips, whose logic is designed to
be configured after they were manufactured or even embedded in the final product (hence
"field”). With them, it is possible to create a circuit that performs certain operations (like
image processing or processor emulation) faster or (and) more energy efficiently than it is
possible with software.

This work describes the implementation of a system, who given GDL rules, creates
a hardware-accelerated reasoner with FPGA and a GGP agent who can use this reasoner
to efficiently play the requested game. This thesis discusses multiple iterations of the de-
velopment of the agent and contains an in-depth analysis of performance across system
components and the system as a whole.



Streszczenie

Jedng z istotnych dziedzin badan nad szeroko pojeta Sztuczna Inteligencja jest tworze-
nie algorytméw zdolnych do grania w gry (agentéw). Jednak zazwyczaj najlepsi agenci w kon-
kretnych grach (np. szachach) wykorzystuja znaczna ilo$é wiedzy dziedzinowej definiowanej
przez ludzi (jak otwarcia szachowe, optymalne strategie przeszukiwania lub heurystyczne
funkcje oceny stanu gry). Na tej wiedzy moze by¢ zbudowana zaréwno cala architektura,
jak i szczegdly implementacyjne agenta. To sprawia, ze jego elementéw czesto nie da sie
wykorzysta¢ w innych zastosowaniach, niz gra w ktéra ma on grac.

By zachecié¢ do badanian nad ogdlnymi problemami zwigzanymi z implementacja agen-
téw gier (i zeby méc pordéwnywaé jako$é tych ogdlnych metod), zostala zaproponowana
dyscyplina GGP (ang. General Game Playing). Agent GGP to agent zdolny do grania w do-
wolne gry, ktérych zasady sa wyrazalne w formalnym jezyku. Przyktadowa implementacja
GGP jest Stanford General Game Playing. Do wyrazania zasad gry uzywa on opartego na
logice pierwszego rzedu GDLa (ang. Game Description Language).

Jedna z najpoplarniejszych metod wykorzystywanych w agentach GGP jest algorytm
MCTS (ang. Monte Carlo Tree Search), ktéry wykonuje losowe przebiegi (symulowane gry,
w ktérych gracze wykonuja losowe ruchy) w celu heurystycznej oceny sytuacji gracza w da-
nym momencie rozgrywki. Jak w innych metodach Monte Carlo, duza liczba losowych pro-
bek (w tym przypadku przebiegdéw gry) jest kluczowym czynnikiem dla jakosci wynikéw
algorytmu. Czes$é agenta odpowiedzialna symulacje gry (i w konsekwencji za wykonywanie
losowych przebiegéw) jest nazywana reasonerem (ang. reasoner).

FPGA (ang. Field Programmable Gate Array) jest cyfrowym ukladem elektronicznym,
ktorego konfiguracja logiczna jest wprowadzana poza etapem produkcji, lub nawet po tym
jak uklad jak zostal juz umieszczony w koncowym produkcie. Przy jego pomocy mozliwe
jest utworzenie ukladu wykonujacego pewne operacje (jak przetwarzanie obrazu lub emula-
cja procesora) szybciej lub (i) energetycznie oszczedniej, niz jest to mozliwe przy pomocy
zwyklego oprogramowania.

Praca ta opisuje implementacje systemu, ktory przyjmuje reguty gry w GDLu, a na-
stepnie tworzy na ich podstawie sprzetowy reasoner w FPGA oraz zdolnego do gry przy
jego uzyciu agenta. Praca przedstawia réwniez analize wydajnosci zaréwno poszczegdlnych
komponentéw, jak i calego systemu na przestrzeni wielu iteracji rozwoju projektu.
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Chapter 1

Introduction

The purpose of this work is to study the feasibility of accelerating General
Game Playing with FPGAs. To accomplish this, a complete Stanford GGP agent
was developed and compared with the state of the art GGP player.

Chapter 1 describes the GGP discipline with an emphasis on the most popular
Stanford’s first order logic-based system. It discusses its implementation details and

presents the most common approaches in the field.

Chapter 2 presents the Monte Carlo Tree Search (MCTS) algorithm, a method
widely used for finding optimal moves in discrete games, and especially in GGP.
It discusses the specific variants of the MCTS and presents changes required to
arrive at implementation capable of playing Stanford GGP efficiently with hardware

reasoner.

Chapter 3 describes the history and high-level construction of FPGAs with
emphasis on elements crucial to the performance of hardware reasoner.

Chapter 4 documents the high-level implementation of the system: reasoner
construction from game rules, data exchange mechanism between the reasoner and
the agent, and two implementations of Stanford GGP agent. At the end of the

chapter, possible improvements to the reasoner are listed.

Chapter 5 contains the results of selected empirical experiments performed on
particular components of the system and the agent as a whole. It discusses each
experiment, in particular, the comparison with the state of the art GGP agent.

The initial version of the system presented in this work was published in A[
2018: Advances in Artificial Intelligence, Springer [19].






Chapter 2

Stanford General Game Playing

2.1 General Game Playing

Though research in General Game Playing dates back to at least 1968 [I5]. The
first practical system for playing general games was the Metagame [14], introduced
in 1992 by Barney Pell. Within it, it is possible to describe two-player, symmetrical,
perfect information games on a rectangular board. The predicates that express
the game dynamics are heavily based on chess. For example, the game definition
language has special keywords for defining hopping (knight-like) movement, the piece
captures, or promotions. It is therefore only possible to play chess-like board games

in Metagame (however, the full rules of chess were actually impossible to express).

Such limitations were partially deliberate, as much of the historical research
was focused on generalizations of chess. They were also desirable when Metagame
was used for automatic generation on new games, ensuring the resulting games will

only be constructed out of concepts familiar to humans.

A much more general system, the Stanford GGP [9][8][11][7], arrived in 2004
and gained so much popularity the term GGP is sometimes used to refer specif-
ically to Stanford GGP. Unlike the Metagame, it does not include concepts from
any particular type of game (like board games). Instead, it only relies on the most
fundamental game concepts like a player, a move, or a score, while all the game dy-
namics are defined using the first-order logic. Despite this generality, GGP cannot
express games with elements of randomness (like a roll of dice) or imperfect infor-
mation (like only one player being able to observe a particular set of cards). Such
restrictions allow GDL rules to be accepted by logic-based programming languages,

like Prolog.
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2.2 Game Description Language

GDL is a first-order logic language proposed to represent game rules in Stanford
GGP in a compact and modular format. It has two syntaxes: LISP based, and Prolog
based. The latter representation will be used throughout this presentation.

A game state in GDL is represented as a set of true facts. Special keywords,
described in Tables and are used to define different game elements and the
game dynamics. By processing the GDL rules, a player is able to reconstruct the
dynamics of a finite state machine for the game (the game states are the machine’s
states and players’ legal actions in particular states are the machine’s transition
edges).

Table 2.1: Predicate types of the Game Definition Language. An example consisting

a full game is provided in appendix @

role(role) Defines a playable role within the game, like ”white player” in
chess: role(white).

base(predicate) Defines a proposition, that has a truth value in every game state.
For example, in chess,
base (control (white))
could define a propsition that is true in states where the white
player makes the next move.

init(proposition) Assigns truth to the base proposition in the first state of the game.

For example in chess, we would express the white player having
the move in the initial state by predicate:

init (control (white))

true(base_proposition)

Evalutes a base proposition in a logical formula.

next(base_proposition)

Assigns truth to a proposition in the next game state. If a base
proposition was not assigned by the next() predicate in previous
state, it is considered false by default. In chess it allows us to
express the alternation of moves by the white and the black player:

next (control (while)) :— true(control(black))
next (control(black)) :— true(control(white))
or

next (whites_move) :— “true(whites_move)
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Table 2.2: Predicate types of the Game Definition Language.

input(role, action) | Defines a possible set of actions for a particular role. Whenever
the action is possible or not in a particluar state is covered by a
different predicate type. For example in chess, we might write the
following predicate to introduce the castling:

input (white, castle_left)

input (white, castle_right)

legal(role, action) | Defines if a predefined action is possible from a current game state.
Usually it is implied from a logical formula made of base proposi-
tions. For example, the following predicate could define avaliabil-
ity of the right castle to the white player (of course assuming all
used base propositions are defined):

legal (white, right_castle) :—
true (control (white)) &
true(cell (f, 1, free)) &
true(cell (g, 1, free)) &
“true (white_right _rook_touched) &
“true (white_king_touched) &
“true(check(black, e, 1)) &
“true (check(black, f, 1)) &
“true (check(black, g, 1))

does(role, action) | Indicates whenever a player performed a particular action during
the last game state transition. For example, consider possible
definition of the white_right_rook_touched predicate:

next (white_right_rook_touched) :—
true (white_right_rook_touched) |
does (white, right_castle) |

does (white, move_right_rook(x, y))

terminal If true, indicates that this is the terminal state of the game. For
example:
terminal :— true(control(player)) &

“true (has_move (player))

goal(player, score) | If true in terminal state, indicates score for a particular player.

For example:

goal (white, 100) :— true(check(white, x, y)) &
true(cell (x, y, black_king))
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It is, of course, possible to express rules of the same game in many non-trivially
different ways. For example, for chess, we might define action space as tuples de-

scribing what piece to move, in which direction and how far. For example:

legal (white (bishop_black north_east 4))

But we might as well define the action space as pairs of positions:

legal (white (al d4))

which would express move of a piece from al to d4.

2.3 Classic approaches

Initial approaches to GGP initially tried to employ some mechanism that would
produce knowledge for the agent about the game (for example, a function for com-
parison of states’ favourness). This would be achieved for example by data mining
and learning (ideally unsupervised), handcrafted game features detection (i.e. the
concept of a board), or statistical methods. Such methods are known as knowledge
based. Examples of successful agents employing such methods are:

e Cluneplayer [6] who uses generalized min-max search. Its heuristic evaluation
function identifies such metagame-concepts as control (correlated with how
much player’s decisions can influence the future states), termination (expected
game length), termination (expected game length), or payoff. It then tries to
correlate such concepts with the state features using statistical methods. The

Cluneplayer won the International General Game Playing Competition in 2005.

o Fluxplayer [16] attempts to identify semantic structures within the game rules
(like a board). It also uses fuzzy logic and graph theory to estimate complete-
ness of the score and terminal predicates in particular states.

In 2006, a Monte Carlo Tree Search (MCTS) algorithm was proposed. Un-
like knowledge-based methods, it only relies on simulated games to arrive at the

estimation of the state’s favourness.

e CadiaPlayer [22] uses an open-source, high performance Prolog implementa-
tion (YAP-Prolog) as a reasoner. It uses statistical methods to introduce bias
towards best promising moves based on historical data. The Similar successful

agents were Ary and TurtleBot.
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e Dumalion [13] performs graph-theory based optimizations to the game rules
and thereby arrives at optimal computation routines for particular predicate
types. It then expresses those routines in C++ code, which is in turn compiled

into a complete reasoner.

2.4 Propositional networks

Because GDL does not support recursion or arithmetic, the set of all propo-
sitions must be finite and known before the match starts. Furthermore, the truth
value of each proposition (next, legal, or does) is defined by a set of implications, so
we may write it as an alternative of all the implications’ bodies. The propositional
networks are a natural representation of such GDL rules. They are directed graphs
where propositions and logical conjunctions are the nodes, while the edges represent
the logical dependencies between the nodes. We can interpret such a graph as a
stateless (cycle-free) logical circuit, for which the inputs are the truth values of the
base propositions (who encode the current game state) and the does propositions
(who encode the player’s actions). The output of this logical circuit are the next
propositions, who define the next game state, the legal propositions, who define next
possible actions, and the terminal and score propositions. If we now connect the
base propositions with the corresponding next propositions trough a synchronous
D-FlipFlop latch and feed players the moves at each clock cycle, the circuit will
correctly and efficiently compute the complete game playout. In order to switch
circuit from one game state to another game state, it is only required to externally
override values of the base propositions.

Since their conception, propositional networks are a common choice for building

fast reasoners, especially for the MCTS-based agents.

2.5 Implementation

Stanford provides a complete environment for agent development and compe-
titions conducting in Java. Among other components, it contains highly integrated

reference implementations of:

the game server with match scheduling

simple agents (like a random action agent, or Python agent),

network communication protocol,

GDL parser,

e game visualization view.
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Game agents are expected to act as HI'TP servers, while the actual game server

issues match-related commands by sending HTTP requests to participating agents.
Agents’ answer is carried within the HT'TP response. Table describes possible

commands.

Table 2.3: HTTP-based network protocol of the Stanford GGP.

Request

Responce

Description

( INFO )

((name <agent name>)
(status <busy | ready>))

Checks if the agent is avaliable
for a match.

( START <game_type>
<match_id>
<role_name>
<game_rules>
<start_clock>
<play_clock> )

<ready | not_ready>

Orders the
a match and provides

start
the
game rules expressed in GDL.
<start_clock>
value of time in seconds that

agent to

is a numerical

the agent has to prepare for
the match. The play clock is
similar, but it is time the agent

has to make each action.

( PLAY <game_type>
<match_id>
<joint_action> )

<action>

Orders the

an action within the previ-

agent to make
ously defined time constraint.
<joint_action> describes previ-
ous actions of all players, which
enables the agent to obtain new
current game state. If this
is the first PLAY command,
the <joint_action> field has the
value of NIL.

( STOP <game_type>
<match_id>
<joint_action> )

Communicates the last players’
actions and indicates the end of
the match.

In cases when a player failed to send a move within a game clock time constraint,

the connection was lost or a player submitted an incorrect move, a random move

is performed by the server for him, and all players are notified about the new joint

move. If the agent supports such cases (like the system presented), matches with

such situations can be salvaged.
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2.6 Extensions to GDL

Several extensions to GDL and Stanford GGP were proposed:

e GDL-IT [20] introduces non-determinism and non-perfect information. Ran-
dom events can be modeled by a player (role) who does random moves. Non-
perfect information, on the other hand, requires substantial changes to the
game system and a new keyword — "sees”. The game server is the only one
who knows the full game state, and instead of the joint move, it sends to each
player whichever observable event was deduced for this player.

e 1tGDL [12] introduces real-time aspects, while maintaining the core structure
of the reasoning. It is also compatible with GDL-II.

e GDL-IIT [21] introduces introspective elements of players’ knowledge into the

game.






Chapter 3

Monte Carlo Tree Search

3.1 Introduction

MCTS is a simulation-based, heuristic strategy search algorithm [5], originally
designed for computer Go [17].

There are three core ideas to MCTS:

e Sampling: in the classical min-max algorithm, the expected outcome for a
given player is calculated by a heuristic static evaluation function. However,
in 1987, it was proposed to use random playouts. In this method, random
moves are performed at each turn from the evaluated state, until the terminal
state is reached. Game scores in the terminal state are treated as a random
sample of the expected-outcome. This approach is knowledge-free, domain-

independent, and as it will turn out, fast to compute.

e Treatment of non-terminal states as a series of multi-arm bandit problems:
when looking for the most optimal move for each player, we want to only ex-
plore the most promising (or likely) paths in the game tree. Therefore, when
traversing the game tree, we need to balance computational resources between
exploitation (better estimating the most promising subtrees so far) versus the
exploration (looking for new promising subtrees). In MCTS, samples are usu-
ally distributed according to the Upper Confidence Bound [4] approach.

e Propagation of results: when we obtain a sample for a particular state, we can

treat it as a sample for all the previous states.

3.2 Implementation

At the beginning of every game turn, the game is in a known state, that we
will call the current root state. In the first round, this state is just the absolute root

17
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(initial) state of the game. Usually, there is a bijection between MCTS nodes and

game states.

The MCTS repeats the following phases until a given search time budget expires.

3.2.1 Selection and UCB1

At the beginning of each iteration, the algorithm traverses the game tree built
so far from the current root state of the game. A selection strategy is used to choose
which player’s action to simulate in each visited node until a state not yet in the
tree is reached. One of the most commonly used selection strategies is UCB1, which
is also used by the system presented.

During game tree descent, the selection strategy must balance between explo-
ration (sampling of the uncertain game subtrees) and exploitation (sampling of the
most promising subtrees). This is analogous to the multiarmed bandit problem, in
which players must find the slot machine that maximizes reward, while he simulta-
neously maximizes the reward gathered so far.

UCBI1 works by assigning confidence value for each player p to each of his action
a € A, and choosing the action with the highest confidence value. Confidence for
action ¢ in a single-threaded implementation is given by the following formula:

where:
v; is the sum of reward samples of nodes that 7 leads to,
n; is the sum of numbers of times the nodes that i leads to were sampled,
C' is a tunable exploration/exploitation bias parameter,
N is the number of samples of the currently selected node,

i € Ap where A, is a set of all actions for the player p in the currently selected state.

C = /2 is theoretically optimal value, provided the rewards are from [0;1]

range.

As mentioned before, in GGP players may do their move simultaneously, so i
may lead to multiple nodes. Therefore v; carries the sum of rewards and n; sum of
the number of samples. In this implementation, each player independently selects a
move that maximizes his UBC1 and assumes the other players will do the same.
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Selection Expansion Simulation Backpropagation

§: i

0/1

Figure 3.1: One iteration of the MCTS algorith

3.2.2 Expansion

When selection reaches a state in the simulation that was not part of the tree
yet, this state is added to the tree as a new node. In this particular implementation,
if a node was never selected, it is considered not-open. When a not-open node is
selected for the first time, all of its children are added to the tree as non-open, and
the selected node becomes open. In this implementation, actions leading to not-open
nodes have assigned v; = 1, n; = 2 during UCBI calculation. If the state is terminal,
the expansion phase is not performed.

3.2.3 Playout

After the node is expanded, its expected outcome value for each player is sam-
pled by performing a before-mentioned random game playout from its game state.

Uniquely to this implementation, the node is sampled multiple times (usually
around 20) due to exceptional brute speed of the reasoner and comparatively high
communication cost between the reasoner and the MCTS manager (which will be
described in detail in the Implementation chapter). If the state is terminal, the

playout phase is not performed.

3.2.4 Backpropagation

After the playout step is performed on the selected node, the sample s of the
expected outcome for each player is propagated to each ancestor of the selected
node.

More specifically, for each ancestor of the selected node:
s is added to a value of v;, where 7 is an action that leads to the selected node,
N (the total number of the ancestor’s samples) is increased by 1.

If the selected state is a terminal one, then s is substituted with the terminal

scores.
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3.2.5 Move selection in games with joint actions

After the time budget for action is about to end within a predefined safety
margin, the loop performing MCTS phases is stopped and the best action for the
player p from the current root state is computed. In this implementation, it happens
by the selection of action ¢ that maximizes the expected outcome:

(%
Uz
where:
v; is the sum of the reward samples of nodes that ¢ leads to,

n; is the sum of the numbers of times the nodes that 7 leads to were sampled.

Another popular best action criteria is a selection of the most sampled action
(the action with the highest n;).

In case of games with players who do their actions simultaneously, it may appear
incorrect to sum sampled rewards for all nodes that particular action may result in,
as there might be many ”"weak” actions for the opposing players, that should not
be taken into account, as they certainly will not be selected. However, the mean

b

expected outcome is weighted by the number of samples, so the "weak” actions
will be heavily undersampled, and will, therefore, have a weak effect on the final
expected-outcome value. This observation is also critical to the understanding of
the selection step in games with simultaneous actions, and the importance of the C
parameter tunning. If C' is way too high, all actions are sampled equally and are

therefore considered equally probable, even if not promising for a particular player.

Other approaches to games with simultaneous moves were studied by Mandy
J. W. Tak et al. [1]

After the most promising move is submitted and the game server responds with
the joint action of all players, the node that this joint action leads to becomes a new
current root, and all nodes that are not its descendants are deleted from the agent’s

memory.

3.3 Parallel MCTS

As will be later explained, the main restriction on the presented system’s per-
formance is the speed of the search manager, as the reasoner spends much more time

waiting for the manager than the other way around.

'The 4 steps of a Monte Carlo Search Tree expansion, Wikimedia Commons, Mciura, Dickson-
lawb83
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One solution to this problem is the parallelization of the search manager, so
other thread can do the tree-related operations, while other waits for the reasoner’s
output. In the case of smaller games, it is also beneficial to employ multiple rea-
soners, each with an associated worker thread performing the tree operations and
thereby maximizing utilization of available CPU power.

As it will be discussed later, the system presented so far achieves precise expected-
outcome values on early stages, when the tree is comparatively shallow, but ulti-
mately its main performance bottleneck is due to inability to construct deep-enough
trees due to communication overhead between the reasoner and MCTS manager.
Therefore, the parallelization method is expected to substantially increase the num-
ber of expansions, and thereby the number of total meaningful MCTS iterations.

The following approaches to parallel MCTS were proposed by the Guillaume
M.J-B. Chaslot et al. [10]

3.3.1 Leaf parallelization

This is the simplest parallelization to implement, as it requires no synchro-
nization mechanisms. It works by performing multiple simulations in the simulation
step, so to achieve more precise samples. Only one thread performs all other MCTS’
phases. This approach is therefore not useful for the presented system, as the same
effect is already achieved thanks to the reasoner’s speed, while the main problem,

that is a comparatively low number of expansions remains unaddressed.

3.3.2 Root parallelization

This method works by parallel construction of separate MCTS trees by each
thread through the entire turn time. After the time budget has expired, the trees are
merged and the expected-outcome averaged out. This method also does not address
the main bottleneck of the system. Although the total number of expansions is much
higher, the vast majority of expansions are redundantly computed in all threads and
the merged tree is not deeper than if it was constructed just by one thread. It only
results in lower noise, something that the presented system already achieves with a
single thread.

3.3.3 Tree parallelization

The last method is the only one that allows for simultaneous, full MCTS itera-
tions. It was proposed with two key concepts. The first concept is mutex localization:
it is proposed to either have a global mutex that locks the entire tree, while many
threads perform the playout phase on many different leaves simultaneously, or to

have threads perform the complete MCTS iterations and use mutexes on each node
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to prevent data corruption. The solution similar to the second one is implemented
in the presented work. A mutex lock is performed on every leaf during the expan-
sion phase, in order to avoid data corruption to the container that holds the child
nodes. Additionally, every variable in every node that holds the sum of rewards
or the number of performed samples is wrapped around a spinlock-based container
that guarantees atomic incrementation. As synchronization overhead increases with
the size of the contained variable, each scalar value (like the sum of the rewards for
a particular player in a particular node) is held in a separate container.

Though this approach guarantees proper state of nodes after the backpropa-
gation phase, it may cause a wrong behavior during the selection phase, as in the
situation when one thread performs a selection from a particular node while another
thread backpropagates sampling results through the same node. In such a situation,
the thread performing the selection may calculate UCB1 value based on rewards
incremented for one player, while not incremented for other, and arrive at the re-
sult it would not make either before or after complete backpropagation. However,
such error will not result in wrong reward values or wrong sampling counter, it only
causes not-optimal sampling for one MCTS iteration. If such error occurs in the
upper parts of the tree, it will likely be immediately corrected by the UCB1 formula
not selecting again the oversampled action during the subsequent MCTS iterations.
The likelihood of such an event occurring on lower parts of the tree is low, due to
the second concept proposed by Guillaume M.J-B. Chaslot et al., namely the virtual
loss.

The virtual loss is a modification of the original UCB1 formula, that decreases
confidence value for nodes that were selected by other thread, but were not yet back-
propagated by it. The system presented in this thesis, when built with parallelism
enabled, applies virtual loss to the UCB1 formula in the following manner:

Vtz(ﬂ +C ln(N))

g
4
V' is a tunable penalty for choosing action that other threads are working on ,

t; is the number of threads that are already working on the action 1.

In other words: during the selection phase, the virtual loss makes nodes that are
being worked on by other threads less attractive. This causes the selecting thread
to avoid data-races by to exploring less likely, but still probable actions.

Proper tuning of the V' parameter is crucial to the performance of the multi-
threaded system. If it is too low, then all threads will follow the same path, thereby
increasing the overhead of the spinlock-based synchronization containers and yield-
ing ineffective expansions steps. The performance of such a system may be worse
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than a single-threaded one. If it is too high, then all threads will avoid each other at
the cost of entering the most unpromising paths, thereby wasting time and produc-
ing degenerated sampling distributions, which in turn may cause the move selection
phase to overestimate the probability of unpromising actions.






Chapter 4

Field Programmable (Gate Array

4.1 FPGA architecture

In 1969, Motorola introduced the X157 chip consisting of 12 logic gates and
30 IO pins. Unlike the previous Integrated Circuits, the logic gates were not per-
manently connected to the IO pins. Instead, X157 had to be first configured to
perform a particular logical function. This marked the beginning of the configurable
digital circuits. Trough 70s, Programmable Logic Array and Programmable Array
Logic devices emerged, containing multiple types of logic gates and flip-flops. In
1984, Lattice Semiconductor invented GAL (Generic Array Logic) devices, which
utilized electrically erasable floating gates to enable configuration the same chip
multiple times. It allowed fast prototyping and efficient construction of circuits ca-
pable of multiple modes of operation. When GALs became much more complex
and started utilizing non-trivial interconnections between layers of logic gates, a
new name emerged for such types of devices: CPLD (Complex Programmable Logic
Device). CPLDs are actively used and produced to this day.

In the late 80s, in parallel to the development of CPLDs, a new architecture of
reconfigurable chips was proposed: FPGA. Instead of CPLD’s sea-of-gates approach,
it extensively uses lookup-tables and flip-flops inside a well-structured network of
identical groups of logic gates (called programmable cells or logic elements).

Figure shows a simplified logic element in FPGA used in this presentation.
Besides obligatory lookup-table and synchronous flip-flop register, it also features
two full adders, enabling efficient embedding of numerical addition within the circuit.
Such architecture makes FPGAs more suited to the implementation of large state-
machines, while CPLDs may perform better when the application demands high
utilization of stateless, combinational logic.

LCV-51001: Cyclone V Device Overview, Intel
2UG-20152: Introduction to Intel FPGA SDK for OpenCL Standard Edition Best Practices

Guide, Intel
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Figure 4.1: Example logic block of the modern FPGA. Clock input to the flip-flop
registers is ommitedﬂ

Figure shows modern FPGA construction at a more macroscopic level. It is
made of thousands or millions of logic elements within a single FPGA chip. In high-
end devices, the programmable interconnect network may contain programmable
delay registers. There might also be digital signal processing modules, modules
specialized for arithmetic, or memory blocks distributed across the entire device.
Modern FPGAs also contain a specialized clock and reset distribution networks,

phase-locked loop devices for clock signal generation and two way 1O registers.

4.2 Altera Cyclone V Architecture

Besides purely computational operations, some applications (like GGP rea-
soners) require FPGA to efficiently handle execution of highly sequential control
programs (for example TCP/IP stack implementation for communication). Two

approaches are common:

e softcore processors: specially designed processor architectures to be efficiently
synthesized within the FPGA fabric — for example Intel Nios II.

e hybrid chips with Hard Processor System (HPS) — the silicon fabric has sepa-
rate spaces for FPGA and the HPS processor, which is designed as a classical
integrated circuit. There usually many bridges for efficient communication
between those two.

The work presented here uses the second approach with the Altera Cyclone V
series SoC: 5CSEMASF31C6. It is equipped with the two ARM Cortex A9 cores
@900MHz and 1GB of RAM.

3cv_5v4: Cyclone V Hard Processor System Technical Reference Manual, Intel
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Figure represents the architectural layout of the SoC. There are visible two

types of interconnections between the HPS and the FPGA hardware reasoner:

e HPS-to-FPGA AXI Bridge — high bandwidth interface used for sending rel-
atively large data, like discovered game states with associated scores, legal

moves, or playout results,

e Lightweight HPS-to-FPGA Bridge — low latency interface for sending com-
mands from HPS to the reasoners. Note that unlike AXI, Lightweight Bridge
is connected to the L3 Peripheral Switch, yet the expected latency is lower
than AXD’s.






Chapter 5

Implementation

5.1 From GDL to Verilog

The presented system comes with a template project for the Quartus IDE. The
only missing part is a definition of the actual propnet structure in propnet.v file. All
other logical components of the propnet are prepared as Verilog modules who only
need to be instantiated and linked with each other.

The first phase of the game preparation is the processing of the GDL rules to
the software propnet form by the code from [I§]. Next, a Java program does a BFS
traversal of the underlying propnet graph, starting from the input propositions.
The traversal algorithm instantiates the before-mentioned Verilog modules as it
encounters new propnet components, and memorizes them in case of them being
referenced by yet-undiscovered components. All components accessible from outside
the propnet: input, legal, transition, goal are given additional, unique id numbers,
and are connected to externally defined 10O ports of the propnet module:

e transition components are grouped and connected to 128-bit read-write con-
text registers, which allows for external game state readout or switch,

e legal and input components are connected with modules responsible for move
randomizations and move enumeration, which allows for the propnet to inter-
nally generate correct random moves or iterate over all possible joint moves in
a particular game state. Additionally, ids of the active input components are
also exported out of the propnet module, which is used during the joint move
enumeration phase. Those ids are also written into a separate XML metadata
file that associates them with the corresponding GDL propositions. In the
later stages, it will allow the game agent to decode binary representations of

joint moves coming from the hardware reasoner.

e goal components are connected to the scores 10 port, which is used to readout

game results in terminal states.
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The first phase is concluded by finding transition components associated with
the init propositions and using their ids to derive a binary representation of the
root game state. This information is appended to the previously mentioned XML
metadata file.

The second phase is a compilation of the reasoner FPGA project. This phase is
not automated and might require multiple trials since the success of the compilation
depends on two key parameters that need to be estimated. The first is the number of
parallel reasoners to synthesize on the FPGA (between 1 and 4 for the used Cyclone
V chip). If this number is too high, the resulting structure might be too large for
the hardware at hand. Another parameter is the propnet clock frequency. If it will
be too high, the synthesis tool will unable to produce a structure for whom signal
propagation time across the longest paths in the propnet fits within the clock period.
If the compilation and synthesis step succeded, the second phase is concluded by a
selection of the appropriate version of the agent program (what will be described in
the C++ Agent section) and running it on the HPS computer.

5.2 Reasoner

The goal of the system is to implement a reasoner that can be effectively used
by the MCTS algorithm. Thus, it needs to perform random simulations from an
arbitrary game state to some terminal state, and report players’ scores.

The search algorithm works on the integrated HPS computer. For the hardware
reasoner to start playouts from a specific node, it has to be given a game state
corresponding to this node. Thus, we require from the MCTS tree implementation
to store data representing the internal state of the FPGA propnet. The root game
state is provided by the before-mentioned XML metadata file, while the subsequent
states are provided by the reasoner itself during the MCTS expansion phase.

The FPGA driver code exposes two core functions to the MCTS:

list <pair<joint_move_t , variant<score_t, fpga_state_t>>>
getNextStates(fpga_state_t state)

which, for a given FPGA reasoner state, returns a list of all legal joint actions that
might happen from it, associated with either the final game score or a next internal
reasoner state, depending if a particular action leads to a terminal or a non-terminal
state.

list <long> getScores (FPGAState state, int n)

computes, for each player, the scores obtained during a batch consisting of n random
simulations.
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Figure 5.1: Diagram of the complete agent. If mutiple reasoners are used, all FPGA

components are copied (including the shared memory).
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Calling the reasoner to calculate a single playout, which is standard for soft-
ware propnets, is very inefficient in our FPGA-based architecture, mainly because
of communication costs. In order to reduce the number of read-write cycles, we
only provide an interface for scheduling batched playouts. When simulating, MCTS
uses the getScores function to request a specific number of playouts (it is an MCTS
initialization parameter) and backpropagates the summarized scores.

Internally, those functions are realised in three modes of the FPGA reasoner
operation: state discovery, state switching, and continuous playout by four essential

components:

e propnet_driver — one for each reasoner. It is a simple state machine designed
to receive commands from the HPS, control the propnet, handle memory oper-
ations and synchronize propnet operations with memory operations. If system
is to be ported to another FPGA environment, only propnet_driver has to be

rewritten.

e propnet — The part containing the game logic. Also contains logic for making
continuous playouts (and thereby legal move randomization) and state discov-
ery (and thereby iteration overall legal moves).

e Shared memory — accessed by both the propnet_driver and HPS for data ex-
change. It is a two-port memory synthesized inside the FPGA and accessed
trough L3 AXI bridge by the HPS.

e RNG - one for each reasoner. Provides random numbers for moves random-

izations during playouts.

The structure of dataflow between those structures is presented in Figure [5.1]

In the state discovery mode, all legal joint actions are iterated over by the move
sequencer. For each joint action, after calculating the next state, the propnet driver
starts forwarding context words (state representation) and the corresponding joint
move into the shared memory. This can be a multi-step process, as the memory may
force a stall of the state transfer until it is ready.

In the context switching mode, the propnet driver queries requested a place in
the shared memory for the context words, which are then written to the propnet’s
context registers.

In the continuous playout mode, the players’ actions are continuously taken
from the modules generating legal random actions, until a terminal state is reached.
When that happens, the propnet module signals scores to the propnet driver and
resets the internal propnet to the previously set game state. To ensure the generated
actions are uniformly distributed, for each player, we randomize a number ¢ between
0 and the number of his legal actions, and loop through all his actions, reducing ¢
on set bits, until the i-th legal action is found.
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Use Connections Name Description Export Clock Base End
clk_ 0 Clock Source
o ckin Clock Input clk exported
o clkin_reset Reset Input reset
clk Clock Output ck 0
| clk_reset Reset Output
8 pll_o PLL Intel FPGA IP
refelk Clock Input clk_0
reset Reset Input
———  outcko Clock Output pil 0_outclko
B8 hps_0 |Arria V/Cyclone V Hard Proce. .
o memory conduit memory
———————————————|  h2freset Reset Output
h2f_axi_clock Clock Input pll_0_outclko
—d  h2f axi_master |41 Master [h2f axi_clock]
h2f_lw_axi_clock Clock Input plI_0_outclko
———————  h2f lw_axi_master X1 Master [h2f lw_axi_clock]
B propnet_driver_0 propnet_driver
clack Clock Input pll_o_outclko
reset_sink Reset Input [clock]
< debug Conduit debug [elock]
—————  memblks_master 1 lAvalon Memory Mapped Master [clock]
command_in lAvalon Memory Mapped Slave lclock] 0x0000_0008 0x0000_0007
o random conduit random_sourcel [clock]
propnet_io_driver Conduit {clock]
E memblk 0 on-Chip Memory (RAM or ROM...
sl lAvalon Memory Mapped Slave [elk1] 0x0000_0000 0x0000_7FFF
s2 lAvalon Memory Mapped Slave [clk1] 0x8000 OxfHf
clkl Clock Input pll_0_outclko
resetl Reset Input elk1]
B propnet_1 propnet_one
clock_sink Clock Input pll_0_outclk0
reset_sink Reset Input felock_sink]
propnet_io conduit [elock_sink]
B propnet_driver_1 propnet_driver
clack Clock Input pll_o_outclko
reset_sink Reset Input [clock]
debug Conduit [elock]
—————=|  memblks master 1 lAvalon Memory Mapped Master [clock]
command_in lAvalon Memory Mapped Slave lclock] 0x0000_0016 0x0000_0017
o random conduit random_source2 [clock]
propnet_io_driver Conduit [clock]
B memblk_1 on-Chip Memory (R&M or ROM.
sl lAvalon Memory Mapped Slave [elk1] 0x0001_0000 0x0001_7FFF
s2 lAvalon Memory Mapped Slave felk1] 0x0000 Ox71f
clkl Clock Input pll_0_outclko
resetl Reset Input felk1]
B propnet_2A propnet_four
clock_sink Clock Input pll_0_outclko
reset_sink Reset Input [elock_sink]
propnet_io conduit [elock_sink]
B propnet_driver_2 propnet_driver
clock Clock Input pll_o_outclko
reset_sink Reset Input [clock]
debug Conduit [elock]
———————|  memblks_master 1 lAvalon Memory Mapped Master [clock]
command_in lAvalon Memory Mapped Slave lclock] 0x0000_0020 0x0000_0027
©{  random Conduit random_source3 [clock]
¢ propnet_io_driver Conduit [clock]
E memblk_2 on-Chip Memory (R&M or ROM.
sl |Avalon Memory Mapped Slave clk1] 0x0002_0000 0x0002_7ff
s2 lAvalon Memory Mapped Slave felk1] 0x0000 Ox7Ff
clkl Clock Input pll_0_outclko
resetl Reset Input elk1]
B propnet_2B propnet_four
clock_sink Clock Input pll_0_outclk0
reset_sink Reset Input [elock_sink]
+——  propnet_io conduit [elock_sink]

Figure 5.2: System layout in the QSYS tool.

Figure [5.2] represent modules layout in the QSYS tool who allows to design a
system from high-level components. The propnet structure is contained in such com-
ponents (propnet_1, propnet_2A, propnet_2B). All components who contain propnets
accept the same signals (propnet_io), but are associated with different Verilog files.
That allows for trivial control of the number of propnet instances to be embed-
ded in the FPGA — some of the component’s implementations are substituted with
placeholders.

5.2.1 Possible improvements

Almost all bottlenecks of the system came from a low number of state expan-
sions. This was primarily because of the relatively slow speed of the MCTS manager,
and secondly due to latency for complete communication transactions between the
reasoners and the MCTS manager. For example, in the first Java-based approach, it
was typical for the reasoner to only work for 10% of the time during the gameplay.
This caused main focus on optimizations to the software part of the system since no
amount of improvements to the reasoner’s speed could increase the overall system

performance by 10%. Currently, in the multithreaded system, each reasoner typi-
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cally works for 50% of the time, and if further improvements to the MCTS manager
were made, or the other hardware was considered, the following improvements can

also be applied:

e pipelining — propnet structure is mostly made out of simple combinational com-
ponents, with the only minimal amount of trivial sequential logic. It, therefore,
should be feasible and interesting to generate ,instruction-level parallelism”-
like pipelining, and increase maximum frequency by order of magnitude for

some games.

e multiple clocks — currently, as shown in Figure [5.2] all system’s components
are clocked from a single PLL, whose frequency is limited by the longest com-
binational path within the propnet. Clock separation between the propnet and
the memory-related parts of the propnet_driver could shorten propnet’s stalls

due to the pending memory operations.

e state cache — generate separate memory blocks (in FPGA) for storage of lastly
added game states, and refer to them by index attached to the command sent
through low-latency lightweight bridge. This may eliminate a good portion of
the states copied trough the high-latency AXI bridge.

e multiple worker threads per reasoner — currently, the worker thread associated
with a particular reasoner is blocked when this reasoner is performing state
sampling. It could be beneficial to spend this time on HPS doing backpropaga-
tion of the previous sample, and at the same time have a third state selected,
so as soon as sampling is completed, the sample backpropagation is enqueued,
and the reasoner can immediately start computing the next expansion or the
next sampling. This should significantly improve performance in games for

whom the required propnet is so large that only one reasoner can be fitted.

5.3 Java agent

The first implementation of the game agent who used this hardware reasoner
and was capable of playing full GGP matches was written in Java. It was built on
top of the ggp-base project and used custom MCTS implementation provided by
Chiara Sironi [I8] To communicate with the reasoner, it was using a shared library
written in C and accessible to the Java code by the JNI interface.

However, after the initial experimental results, it quickly proved to be the
biggest bottleneck of the system. This was mainly because of the limited perfor-
mance of the HPS computer in conjunction with the computation overhead and
nondeterministic garbage collection of the Java Virtual Machine. In practical sce-
narios (like the Pentago game), the hardware reasoner was spending more than 85%
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of total search time in the standby state waiting for the tree search manager to finish

processing of the previous data and issue a new command.

5.4 C++ agent

The subsequent agent implementation was done in C++. Using templates, it
produces separate implementations for different game parameters (most importantly
state sizes), which makes it possible to directly embed the game state and other
information directly within the MCTS structures. Agent builds for different game
types can be either prepared in advance or automatically compiled when a new
match request is received.

This, together with efficient and deterministic deallocation of the nodes and
lack of JVM and JNI overhead results in a reduction of reasoner standby time to
approximate 40% for Pentago with the same parameters as the Java agent was
tested. Moreover, the C++ version of the agent also supports the usage of multiple
reasoners in tree-parallelized MCTS.
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Experimental results

6.1 Reasoner performance

Hardware implementation of propositional networks is expected to have orders
of magnitude higher performance than a software implementation because of zero
computational overhead and simultaneous propagation of signals. The latter is es-
sential, as in hardware, the simulation speed is dictated by the clock frequency, which
is in turn constrained by the longest combinational path, not the total number of

propnet components.

All the following tests were conducted with TerasIC DE1-SoC board containing
the Altera’s Cyclone V series SoC: 5CSEMA5SF31C6. The GGP player, search algo-
rithm and communication with the reasoner are run by a computer embedded in the
before-mentioned SoC with ARM Cortex A9, Dual core @925Mhz with 1 GB RAM,
running Debian 9 Strech 32-bit. The FPGA project compilation is performed on
Intel Core 15-4670 with 16 GB DDR3 @1600Mhz RAM using Debian 10 64-bit and
Intel Quartus Prime Lite Edition 18.0 as FPGA compilation IDE. Software prop-
nets and the GGP-Base Prover are tested on a Linux server consisting of 64 AMD
Opteron 6174 2.2-GHz cores and 252 GB RAM.

The first test evaluates the performance of the hardware reasoner against the
state-of-the-art software reasoner, and a baseline Stanford GGP reasoner. The test
is done by performing a million of random playouts (except for reversi, where 1000

playouts were performed) and measuring:

e agent’s initialization time (for FPGA this includes the compilation and circut

upload process),
e average reasoner’s speed in moves (game state changes) per second,

e correctness: usually one of the players has a little advantage and thereby

higher mean score on random playouts. If hardware reasoner is valid, it should
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Table 6.1: Comparison of reasoners based on running Flat Monte Carlo algorithm

CHAPTER 6. EXPERIMENTAL RESULTS

Game Speed (avg nodes/sec) Initialization time #Propnet FPGA chip

FPGA [ software [ Prover FPGA (min) [ software (sec) components utilization
Horseshoe 8,500,000 192,583 3,812 4:20 0.45 350 7%
Connectfour 7,000,000 285,908 561 5:37 0.67 814 12%
Pentago 7,000,000 | 119,111 | 342 5:20 2.70 1,201 13%
Joint-connectfour 4,500,000 171,575 270 5:53 1.00 1,614 16%
Breakthrough 1,400,000 | 38,015 601 12:03 1.35 17,752 72%
Reversi 1,171,875 | 4,806 19 14:08 23.91 56,014 0%

produce the same score discrepancy as software reasoner, but in much shorter

time.

Table describes the result of a single hardware reasoner. It clearly shows the
massive advantage of the hardware reasoner in performance and its massive disad-
vantage in initialization time. For all games except Reversi, the improvement factors
are between 24.5 (Connect-Four) and 58 (Pentago). For Reversi, which produces the
largest propnet among the tested games, FPGA-based reasoner computes states over
290 times faster. This example shows that smaller propnets do not necessarily imply

smaller chip utilization.

The initialization time instead of seconds is about 5-6 minutes for small and
medium games, and for large propnets it is almost a quarter. Such times exclude
GGP players from being ready during their standard initialization clock. This issue
is discussed in detail later and possible solutions are presented in the next section.

6.2 Parallel MCTS performance

After the single-threaded implementation was extensively tested against the
classical Monte Carlo player bundled with the GGP-project, it was necessary to
confirm that multi-threading and other optimizations of the C++ agent do not
distort the UCB results. It is also helpful to estimate the multithreading overhead
and the virtual loss penalty.

There are following build parameters to the agent build process:

e MCTS parallelization enabled (M) or disabled (S),
e optimizations on (R) or off (D),
e game state size.
For example, MD-8 denotes the parallel agent with optimizations disabled, sup-
porting a game state of the maximum size of eight 32-bit words.

The test was conducted by computing 200 000 MCTS iterations from the root
state of the Pentago game with the SD build and setting it as a baseline. Achieved
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UCB values for the white player were saved and then recalculated by every con-
figuration with much stricter time available. The multithreaded build was working

using three hardware reasoners. In a correctly working system, it was expected that:

e given the same amount of time, the multithreaded build will perform more
than 100% MCTS simulations in total, but there will be up to 50% less MCTS
iterations per thread due to synchronization overhead and a limited number
of two physical cores on the HPS,

e there should be a strong inverse correlation between the number of MCT'S sim-
ulations and the mean error regardless of the configuration. Given the same
amount of simulations, the multithreaded build might perform marginally
worse due to the virtual loss penalty,

e optimizations should give a significant improvement in performance.
Table 6.2: Performance comparison of different builds of the MCTS manager. Errors

are squared differences in UCT values between the tested configuration and the
baseline. The UCT values are from 0-64 range.

Configuration: SD-8 | SD-8 | MD-8 | MD-8 | SD-8 | MR-8
Time (s): 2 19 2 19 41 7
MCTS interations: | 1314 | 11742 | 2879 25153 | 25255 | 23843
Run 1 error: 22.96 | 4.46 11.72 1.65 2.24 3.81
Run 2 error: 22.31 | 3.46 10.31 2.25 2.25 2.58
Run 3 error: 35.18 | 6.19 8.77 2.36 1.93 2.11
Run 4 error: 31.34 | 8.44 6.28 2.85 1.56 2.48
Run 5 error: 17.04 | 2.99 10.12 2.00 2.32 1.81
Run 6 error: 27.54 | 2.99 12.38 2.18 2.75 3.46
Mean error: 26.06 | 4.76 9.93 2.21 2.17 2.71

All those predictions were fulfilled. The performance of a single thread in the
multi-propnet build is slower by around 30%. This is because:

e virtual loss computation overhead,

e scores, simulation, and virtual loss must be stored in containers that guarantee

atomic operations,
e mutex lock and release is required every expansion,

e in a multithreaded system every time a thread waits for the reasoner, std::thread::yield()
function is called, which encourages the system scheduler to reschedule the cur-
rently executing thread. In the single-threaded version, on the other hand, the
whole HPS processor is stalled until reasoner completes an operation, making
possible to continue execution as soon as the reasoner’s work is completed.
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Game Initialization time FPGA MCTS iterations / second
Software (sec) FPGA (hours) Reasoners no. Utilization Software FPGA Software FPGA

Reversi 23.91 4:51:58 2 73% 43 3207 0 80
Breaktrough 1.35 0:16:11 1 70% 390 1052 20 60
Pentago 2.70 0:16:21 4 81% 2189 6122 23 57
Joint-connectfour 1.00 0:11:04 4 52% 6825 2860 40 40
Joint-connectfour* 1.00 0:07:30 1 25% 6825 1580 58 22
Joint-connectfour** 1.00 0:11:04 4 52% 6825 3698 48 32
Connectfour 0.67 0:09:37 4 31% 14239 9685 58 22

Table 6.3: Results of the matches conducted between the FPGA player and the
baseline software implementation. FEach game was played 40 times. After each
round two points were given to the victorious player or one point to both players
in the case of a draft. The FPGA player was set to do 10 random playouts at each
simulation phase, except for the test marked with ** when 1 playout was set. The
game clock was set to 5 seconds. The distribution of the scores was non-trivial for
each game (i.e. no high number of drafts or near-100% correlation between the role
and the game result). MCTS iterations/second values were sampled during the first
step of the match. Joint-connectfour was separately tested with multiple reasoners
disabled in the test marked with *.

The virtual loss penalty was found to be insignificant (the difference in mean
error between MD-8 and SD-8 runs is very insignificant).

6.3 Agent’s performance

To ensure proper fine-tunning of the V and C' MCT'S parameters, two sessions of
trial-and-error tests were conducted. A python script was used to run 14 instances of
the FPGA agents, each with different parameters. Then, the same script conducted
20 matches against the software player with a fixed configuration. After coarse
values were obtained, the test was rerun for finer adjustment with parameters closely
clustered around the previously found optimal value. All tests were conducted on
the Joint-connectfour game. The difference in winrate between guessed parameters
(V' =0.85,C = 0.707) and the found ones (V' = 0.985, C' = 0.55) was around 20%.

Then, the most comprehensive test was run: a session of matches where the
FPGA agent played 40 full matches against the state of the art GGP player on 5
different games. The results are presented in Table

The last conducted experiment was to measure how the game progress affects
the MCTS iterations per second discrepancy. When a match is in its final phases, the
MCTS subtrees become shallow and devoid of open nodes. The MCTS iterations per
second then depends less on the reasoner speed, and more on the MCTS routines,
who in case of the hardware agent, are executed on the HPS. To measure this effect,
an experiment was conducted, in which 560 Joint-connectfour matches were played.
Then, the distribution of game lengths was examined and four game lengths, each
with more than 15 samples, selected. The samples were then averaged in terms of
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MCTS iterations per second at each match step and presented in figure [6.1

6.4 Discussion

In Table we observe that the speed of the agent expressed in the number of
full MCTS iterations per second is closely related to the game complexity (expressed
in the number of propnet components) for software implementation. For the hard-
ware implementation, however, there is no such correlation. The following reasons

might be the cause.

e There are additional game parameters that are not correlated with game com-
plexity but affect the computational work required to complete an MCTS
iteration. The average match length is the most notable example. For hard-
ware reasoner, another such crucial parameter is the average number of legal
actions and size of the game states, which affect communication overhead.

e As shown in Table hardware reasoner’s clock is much less correlated with
the game complexity than software’s nodes per second metric. As a result,
the ,noise” introduced by the previous point might be higher than whatever
correlation remains.

The principal example is the most complex game tested, the Reversi/Othello,
for which the FPGA agent achieves two orders of magnitude advantage in

speed and wins every single match.

The experiment clearly shows the massive advantage of the FPGA agent in
complex games, as well as its disadvantage in the simple ones. Joint-connectfour is

an interesting example for two reasons:

e it is a game whose complexity is just right so the performance of the software

and hardware implementations match,

e software reasoner does about twice more MCTS iterations per second, however,
the win rate is the same for both agents. It is important to remember that
the FPGA agent does 10 game playouts at every simulation step, while the
software version does only one. This significantly decreases the noise of the
simulation results and may balance out less MCTS iterations. This is further
indicated by results of the match marked with *, where the number of playouts
was set 1, which increased the number of MCTS iterations but reduced overall

score, confirming the positive effect of batching playouts.

As shown in Table 6.1}, compilation time for a single Reversi hardware reasoner
is about 12 minutes. However, during testing of the full agent who used two such



EXPERIMENTAL RESULTS

CHAPTER 6.

44

dals swen
St oy GE 0€ 14 0z ST o)
sdo1S G JO syibus| sweb ‘Inojdsuuodiulof
dais awen
sz 0z ol o)

=

sda31s 1€ 40 syibua| sweb ‘Inojdsuuodiulof

o
S
o
o
]
<
s/suoiela)| S1OW

0000001

0
0000t
00008
000071
000091
00000Z &
0000tZ &
000087 §
00002€ &
00009€ S
00000t &
0000t
00008Y
000025
000095
000009

dajs swen
53 0€ 14 0c ST 0T

4

sda3s /€ Jo syibua| saweb ‘Inoj3d3uuodiulof

dajs swen
14 1 0T

8T 9T

ueaw juabe aiemyos o

ueaw juabe alempieq o
Xew/ujw jusafe alemyos ——
xew/uiw jusbe aiempieq ——

sda1s 6T 40 syibus| sweb ‘Inojdsuuodiulof

0000Zs
00009
000009
000079
000089

0
0000%
00008
000021
000091
000002 m
0000vZ
000082
0000Z€ 3
00009€ m
000007 @
oooovy "
00008%
000025
000095
000009
0000%9

Comparisons of numbers of MCTS iterations / second for software and

Figure 6.1

hardware players at different game phases.
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reasoners, the compilation time increased to almost 5 hours. Reasons for such a
dramatic increase in compilation time are unclear, as it does not happen in other
games. For example, it takes about 5 minutes to compile a system with a single
Pentago reasoner, and it only takes about 16 minutes to compile a system with 4
such reasoners. Moreover, in the case of 4 reasoners Pentago system, the reported
FPGA chip utilization is higher than 2 reasoners Reversi system, yet the compilation
time is an order of magnitude lower.

Figure shows that discrepancy between software and hardware agent only
gets higher as the game in Joint-connectfour progresses (from twice the value to order
of magnitude for certain game lengths). This does not imply the implementation
of the MCTS in the hardware agent performs worse, because the HPS has much
less computing power than Opteron 6174, who runs the software agent (i.e. 48-core
Opteron 6174 achieved 27241 score in Geekbench 2 benchmark [2], while the HPS
only scored 872 [3]).

6.5 Utilization of the FPGA agent

The current implementation extensively uses Intel’s Quartus Prime and QSYS
features, which are not trivial to automatize. For two player games, the current
system needs a human to estimate the number of parallel reasoners and rerun the
compilation if the estimation was too high. If the game has more than two players,
a manual change of widths of the buses and memory layouts is required in the
QSYS environment. However, those interventions do not require a human to make
any decision process that cannot be clearly and algorithmically written. They are
only due to how Intel’s FPGA development tools practically work and can all be
automated in principle.

Long initialization time is the main reason why FPGA player cannot compete
in normal GGP competitions. With industry-standard software, the compilation
times are about an order of magnitude longer than usual GGP limits, even for small

and medium games.

There are however other scenarios, where long compilation time can be out-
weighed by the huge performance boost of the presented system. Consider MCTS
research, where there might be a need for an experiment that evaluates a selection
strategy by performing a million of MCTS iterations in a game as complex as Re-
versi. Furthermore, assume the reasoners are already built since this is not the first
experiment on Reversi. Conducting such an experiment would take 6.5 hours with
the current state of the art GGP player, while the hardware agent presented here
would only need 5 minutes (according to results from table. Even if the reasoner
had to be built, the hardware agent would have still have completed the experiment
1.5 hours sooner.






Chapter 7
Summary

The purpose of the study was fulfilled. The dynamic construction of the GGP
reasoner was found possible for the small and medium-large game sizes on relatively
cheap hardware ($155 in 2019). Resulting reasoner is orders of magnitude faster
than its state of the art software counterpart. The larger the game is, the higher
is the relative discrepancy between those reasoners, provided the propnet structure
will fit into the FPGA chip.

While the game size limit of the presented process can be mitigated with better
hardware, the construction time of the reasoner is orders of magnitude longer than
for software and beyond usual limits of the GGP competitions, even for the smallest

games.

When coupled with the full agent running on the non-FPGA processor and
tested in the real GGP match, the reasoner is underutilized in all tested scenar-
ios and therefore agent loses much of its reasoning speed advantage on the tested
hardware. This problem was partially mitigated by arriving at second, highly opti-
mized MCTS implementation, using multithreading and batching certain operations.
Given enough initialization time, the resulting agent wins against the state of the art
software agent running on a high-end computer in medium-large games each time,
and most of the times in medium games. Its performance matches the software

agent in Joint-connectfour and it performs worse in smaller games.

The study finds the hardware acceleration is unfeasible for GGP competitions
but potentially very useful for MCTS and GGP research, where it can reduce the
time of conducting certain experiments by two orders of magnitude.
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A. TICTACTOE AS GDL

A Tictactoe as GDL

role(white)
role(black)

base(cell (M,N,x)) :- index(M) & index(N)
base(cell(M,N,0)) :- index(M) & index(N)
base(cell (M,N,b)) :- index(M) & index(N)

base (control (white))
base (control (black))

input (R,mark(M,N)) :- role(R) &
index (M) & index(N)
input (R, noop) :- role(R)

index (1)
index (2)
index (3)

init (cell(1,1,b))
init (cell(1,2,b))
init (cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init (cell(3,1,b))
init (cell(3,2,b))
init (cell(3,3,b))
init (control (white))

legal (W,mark(X,Y)) :-
true(cell (X,Y,b)) &
true (control (W))

legal (white ,noop) :-
true (control (black))

legal(black ,noop) :-
true (control (white))

next (cell(M,N,x)) :-
does (white ,mark (M,N)) &
true (cell (M,N,b))

next (cell(M,N,0)) :-
does (black ,mark (M,N)) &
true(cell (M,N,b))

next (cell(M,N,W)) :-
true(cell(M,N,W)) &
distinct (W,b)

next (cell(M,N,b)) :-
does (W,mark (J,K))
true (cell(M,N,b)) &
distinct (M, J)

next (cell(M,N,b)) :-
does (W, mark (J,K))
true (cell(M,N,b)) &
distinct (N,K)

Source: Stanford’s Public Course on GGP
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next (control (white)) :-

true (control (black))
next (control (black)) :-

true (control (white))

goal (white ,100) :- line(x) & ~line (o)
goal (white ,50) :- “line(x) & ~line (o)
goal (white ,0) :- “line(x) & line(o)
goal (black ,100) :- ~line(x) & line (o)
goal (black ,50) :- “line(x) & ~line (o)
goal(black,0) :- line(x) & ~line (o)
line(Z) :- row(M,Z)
line(Z) :- column(M,Z)
line(Z) :- diagonal(Z)

row(M,Z) :-
true(cell(M,1,Z)) &
true(cell(M,2,2Z2)) &
true(cell (M,3,2))

column(M,Z) :-
true(cell (1,N,Z)) &
true(cell(2,N,Z)) &
true(cell (3,N,Z))

diagonal(Z) :-
true(cell(1,1,Z2)) &
true(cell(2,2,2Z))
true(cell(3,3,Z)) &

&

diagonal(Z) :-
true(cell(1,3,Z)) &
true(cell(2,2,2))
true(cell(3,1,2)) &

154

terminal :- line(x)
terminal :- line (o)
terminal :- Topen

open :- true(cell(M,N,b))
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http://cezar.info/heap/propnet-tictactoe.dot

C. TICTACTOE AS VERILOG

C Tictactoe as Verilog

module propmet (
input wire clock_sink_clk, // clock_sink.clk
input wire reset_sink_reset, // reset_sink.reset
input wire [15:0] command, // propnet_io.command
output wire [127:0] context_out, 1/ .context_out
output wire terminal , /7 .terminal
output wire [31:0] scores, 1/ .scores
input wire [15:0] random_source, 1/ .random_source
output wire [127:0] debug, 17 .debug
input wire [127:0] context_in, 1/ .context_in
output wire 101 players_moves, 7/ .players_moves
output wire context_valid, 1/ .context_valid
output wire context_size 1/ .context_size

Vs
assign scores[15:0] = terminal ? playerO_score :

assign scores[31:16] terminal ? playerl_score

wire[15:0] player0_seqmove;
wire[15:0] playerli_seqmove;
wire[15:0] player0_randmove;
wire[15:0] playeri_randmove;

wire[7:0] context_request = command([15:8];

wire [15:0] playerO_move = command([2] ? player0O_seqmove : playerO_randmove;
wire [15:0] playeri_move = command[2] ? playeri_seqmove : playeri_randmove;
wire soft_rst = command[1] || terminal;

wire clk = clock_sink_clk;

wire rst = reset_sink_reset;

wire protected_step = command[0] && !'terminal && (!context_valid[0]);
wire context_valid_seq;
reg context_valid_reg;

assign active_player_move = playerO_move;

reg step_done;

assign context_valid[0] = step_done &k command(2];
assign players_moves[15:0] = player0_move;
assign players_moves[31:16] = playerli_move;

always @(posedge clk or posedge reset_sink_reset)

begin
if (reset_sink_reset)
begin
step_done <= 0;
end
else
begin
if (soft_rst)
step_done <= 0
else
step_done <= step_done | command[0];
end
end

wire [28:0] current_context;
wire [28:0] return_context;

pn_muxer128 #(1) context_muxer (current_context, context_request, context_out)
pn_demuxer128 #(1) context_demuxer(clk, context_in, context_request, command[3], return_context);

wire [9:0] playerl_move_onehot;

wire [9:0] legalsi;

wire [ player0_move_onehot;

wire [9:0] legalsO;

pn_move_selector #(10) move_selectori(legalsi, random_source, playerl_randmove);
pn_onehot #(10) move_mux1i(playeri_move, playeri_move_ onehot);

pn_move_selector #(10) move_selector0O(legalsO, random_source, playerO_randmove);
pn_onehot #(10) move_mux0(player0O_move, player0O_move_onehot);

pn_move_sequencer #(10, 10) sequencer(clock_sink_clk, reset_sink_reset, command[2], command[0], legals0O, legalsi,

assign context_size = 1;
] playeri_score = (goals_1 * 0) + (goals_3 x 100) + (goals_4 * 50) + 0;
1 playerO_score = (goals_0 * 100) + (goals_2 * 0) + (goals_5 * 50) + 0;

assign current_context[0] = output_98;

assign current_context[1] = output_105;
assign current_context[2] = output_122;
assign current_context[3] = output_128;
assign current_context[4] = output_138;
assign current_context[5] = output_143;
assign current_context[6] = output_148;
assign current_context (7] = output_153;
assign current_context[8] = output_158;
assign current_context [9] = output_185;
assign current_context[10] = output_195;
assign current_context[11] = output_202;
assign current_context [12] = output_206;
assign current_context [13] = output_211;
assign current_context [14] = output_21

assign current_context [15] = output_221;
assign current_context [16] = output_225;
assign current_context[17] = output_22

assign current_context [18] = output_233;
assign current_context [19] = output_236;
assign current_context [20] = output_240;
assign current_context [21] = output_243;
assign current_context [22] = output_245;
assign current_context[23] = output_24

assign current_context [24]
assign current_context [25]
assign current_context [26]
assign current_context [27]
assign current_context [28]
wire output_0;

wire output_1;

wire output_2;

wire output_3;

wire
wire
wire
wire
wire
wire
wire output_10;
wire output_11;
wire output_12;
wire output_13;
wire output_14;
wire output_15;
wire
wire
wire
wire output_19;

wire [5:0] input_20;
wire output_20;

wire [6:0] input_21;
wire output_21;

wire [1:0] input_22;

output_265;

player0_seqmove,
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playeri_seqmove,

context_valid[1]);
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wire output_22;
wire [1:0] input_23;
r...1

assign input_20[0] = output_3; assign input_20[1]
assign input_21[0] = output_11; assign input_21[1]
assign input_22[0] = output_0; assign input_22[1]
assign input_23[0] = output_49; assign input_23[1]
assign input_24[0] = output_8; assign input_24[1]
assign input_25[0] = output_5; assign input_25[1]
assign input_26[0] = output_2; assign input_26[1]
assign input_27[0] output_3; assign input_27[1]
assign input_28[0] = output_16; assign input_28[1]
assign input_29[0] = output_6; assign input_29[1]
assign input_30[0] output_59; assign input_30[1]
assign input_304[0] = output_30

...

output_17;
output_14;
output_47;
output_1;

output_11;
output_17;
output_53;
output_55;
output_6;

output_16;
output_4;

pn_input #(0) component_9 (output_9, playerO_move_onehot[9]);

pn_input #(0) component_10 (output_10, playeri_move_onehot [0]);
pn_input #(0) component_11 (output_11, playeri_move_onehot[1]);
pn_input #(0) component_12 (output_12, playeri_move_onehot[2]);
pn_input #(0) component_13 (output_13, playeri_move_onehot [3]);
pn_input #(0) component_14 (output_14, playerl_move_onehot[4]);
pn_input #(0) component_15 (output_15, playeri_move_onehot [5]);
pn_input #(0) component_16 (output_16, playeri_move_onehot [61);
pn_input #(0) component_17 (output_17, playeri_move_omehot [71);
pn_input #(0) component_18 (output_18, playeri_move_onmehot [8]);
pn_input #(0) component_19 (output_19, playerl_move_onehot [9]);

pn_or #(6) component_20 (input_20, output_20);
pn_or #(6) component_21 (input_21, output_21);
pn_and #(2) component_22 (input_22, output_22);
pn_and #(2) component_23 (input_23, output_23);
pn_or #(6) component_24 (imput_24, output_24);
pn_or #(6) component_25 (imput_25, output_25);
pn_and #(2) component_26 (input_26, output_26);
pn_and #(2) component_27 (input_27, output_27);
pn_or #(6) component_28 (input_28, output_28);
pn_or #(6) component_29 (input_29, output_29);
pn_and #(2) component_30 (input_30, output_30);
pn_and #(2) component_31 (input_31, output_31);
pn_and #(2) component_32 (input_32, output_32);
pn_and #(2) component_33 (input_33, output_33);
pn_and #(2) component_34 (input_34, output_34);
pn_and #(2) component_35 (input_35, output_35);
pn_and #(2) component_36 (input_36, output_36);
pn_and #(2) component_37 (input_37, output_37);
pn_and #(2) component_38 (input_38, output_38);
pn_and #(2) component_39 (input_39, output_39);
pn_and #(2) component_40 (input_40, output_40);
pn_and #(2) component_41 (input_41, output_41);
pn_and #(2) component_42 (input_42, output_42);
pn_and #(2) component_43 (input_43, output_43);

pn_proposition #(1) component_44 (input_44, output_44);
pn_proposition #(1) component_45 (input_45, output_45);

pn_or #(2) component_46 (input_46, output_46);

pn_proposition #(1) component_47 (input_47, output_47);

pn_or #(2) component_48 (input_48, output_48);

pn_proposition #(1) component_49 (input_49, output_49);
pn_proposition #(1) component_50 (input_50, output_50);
pn_proposition #(1) component_51 (input_51, output_51);

pn_or #(2) component_52 (input_52, output_52);

pn_proposition #(1) component_53 (input_53, output_53);

pn_or #(2) component_54 (input_54, output_54);

pn_proposition #(1) component_55 (input_55, output_55);
pn_proposition #(1) component_56 (input_56, output_56);
pn_proposition #(1) component_57 (input_57, output_57);

pn_or #(2) component_58 (input_58, output_58);

pn_proposition #(1) component_59 (imput_59, output_59);

pn_or #(2) component_60 (input_60, output_60);

pn_proposition #(1) component_61 (input_61, output_61);

pn_or #(2) component_62 (input_62, output_62);

pn_proposition #(1) component_63 (input_63, output_63);

pn_or #(2) component_64 (input_64, output_64);

pn_proposition #(1) component_65 (input_65, output_65);

pn_or #(2) component_66 (input_66, output_66);

pn_proposition #(1) component_67 (input_67, output_67);

pn_or #(2) component_68 (input_68, output_68);
pn_or #(2) component_69 (input_69, output_69);

r

pn_and #(2) component_88 (input_88, output_88);

pn_proposition #(1) component_89 (input_89, output_89);
pn_proposition #(1) component_90 (input_90, output_90);

pn_and #(2) component_91 (input_91, output_91);
pn_and #(2) component_92 (input_92, output_92);
pn_and #(2) component_93 (input_93, output_93);
pn_and #(2) component_94 (input_94, output_94);
pn_and #(2) component_95 (input_95, output_95);
pn_and #(2) component_96 (input_96, output_96);
pn_or #(9) component_97 (input_97, output_97);

pn_transition #(1) component_98 (input_98, output_98,

pn_and #(2) component_101 (input_101, output_101);
pn_and #(2) component_102 (input_102, output_102);
pn_and #(2) component_103 (input_103, output_103);
pn_and #(2) component_104 (input_104, output_104);

pn_transition #(1) component_105 (input_105, output_105,

pn_and #(2) component_106 (input_106, output_106);
pn_and #(2) component_107 (input_107, output_107);
pn_and #(2) component_108 (input_108, output_108);
pn_and #(2) component_109 (input_109, output_109);
pn_and #(2) component_110 (input_110, output_110);
pn_and #(2) component_111 (input_111, output_111);
pn_and #(2) component_112 (input_112, output_112);
pn_and #(2) component_113 (input_113, output_113);
pn_and #(2) component_114 (input_114, output_114);
pn_and #(2) component_115 (input_115, output_115);

assign
assign

assign
assign

assign
assign

protected_step,
pn_proposition #(1) component_99 (input_99, output_99);
pn_proposition #(1) component_100 (input_100, output_100);

pn_proposition #(1) component_116 (input_116, output_116);
pn_proposition #(1) component_117 (input_117, output_117);

pn_and #(2) component_118 (input_118, output_118);
pn_and #(2) component_119 (input_119, output_119);
pn_and #(2) component_120 (input_120, output_120);
pn_and #(2) component_121 (input_121, output_121);

pn_transition #(1) compoment_122 (input_122, output_122,

pn_proposition #(1) component_123 (input_123, output_123);
pn_proposition #(1) component_124 (input_124, output_124);

pn_and #(2) component_125 (input_125, output_125);
pn_and #(2) component_126 (input_126, output_126);
pn_and #(2) component_127 (input_127, output_127);

pn_transition #(1) component_128 (input_128, output_128,

pn_and #(2) component_129 (input_129, output_129);

r...1

endmodule

protected_step,

protected_step,

protected_step,

input_20[2]
input_21[2]

input_24[2]
input_25 [2]

input_28[2]
input_29 [2]

output_12;
output_2;

output_2;
output_15;

output_8;
output_5;

return_context [1], rst,

return_context [2], rst,

return_context [3], rst,

assign
assign

assign
assign

assign
assign

return_context [0], rst, soft_rst,

input_20[3]
input_21[3]

input_24[3]
input_25[3]

input_28[3]
input_29 [3]

clk);

soft_rst, clk);

soft_rst, clk);

soft_rst, clk);

output_0;
output_0;

output_15;
output_1;

output_3;
output_1

assign
assign

assign
assign

assign
assign

input_20[4]
input_21[4]

input_24 (4]
input_25 [4]

input_28 [4]
input_29 [4]

output_19;
output_4;

output_18;
output_7

output_12;
output_4;



D. TOOLS USED
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Tools used

Tool name
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Usage

GNU/Linux Operating systems for the development machine and the HPS
Intel Quartus 17 IDE for the compilation of the FPGA project
g++ C++ cross compiler

gdb, gdbserver

C++ cross-debugger

cmake Build system
Poco C++ networking library
pugixml C++ XML library

Visual Studio Code

C++ and Verilog IDE

GGP project

Reference implementation of the Stanford GGP components

Icarus Verilog

Verilog code simulation

GTK Wave Visualisation of Verilog code simulation
git Version control

bash Agent and debugger launch scrips
python gdb scripting

ssh

HPS access
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