
System for autonomous control of a racing car

(System autonomicznego kierowania samochodem wyścigowym)

Cezary Siwek

Praca inżynierska

Promotor: dr Jakub Kowalski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

31 sierpnia 2017

Abstract

Autonomous car racing is a task that requires solving problems from many fields. In
this study, the author presents his system for a car control in the simulated racing
environment is presented. The system’s performance is compared to human players
and other existing controllers. This thesis also describes contributions to various
subjects including path planning, control theory, and evolutionary algorithms.

Autonomiczne kierowanie samochodem wyścigowym jest zadaniem, które wy-
maga rozwiązania problemów z wielu dziedzin. W pracy został przedstawiony au-
torski system sterujący samochodami w symulowanym środowisku, porównano jego
wyniki z ludźmi i innymi algorytmami oraz omówiono wybrane zagadnienia z takich
dziedzin jak planowanie ruchu, teoria sterowania i algorytmy ewolucyjne.

Contents

1 Introduction 7

1.1 The real world . 7

1.2 The HingyBot . 8

1.3 TORCS . 8

1.4 Simulated Car Racing Championship 9

1.4.1 Rules . 9

1.4.2 Technical details . 9

1.4.3 Car input and output . 10

1.4.4 Existing approaches and studies 12

2 Evolutionary approach 13

2.1 Infrastructure . 13

2.2 Parameters searching . 14

2.3 Gene Regulatory Networks . 14

2.3.1 In biology . 14

2.3.2 In evolutionary computation 14

3 Track recording 17

4 Path planning 19

5 Speed planning 23

5.1 Backwards-traveling agent . 23

5.2 Gene Regulatory Network . 24

5.3 Dangerousness metric . 24

5

6 CONTENTS

5.4 Using the speed plan to optimize the trajectory 25

6 Drive plan execution 27

6.1 Transition into sensor space . 27

6.2 Transmission . 27

6.3 Cascade PID controller . 27

6.4 Collision avoidance . 28

6.5 Returning to track . 28

7 Results 29

7.1 Racing against humans . 29

7.2 Racing against the TORCS bots . 30

7.3 Racing against the SCRC2015 champion 31

7.4 Further improvements . 32

Chapter 1

Introduction

1.1 The real world

As industrial automation progresses, autonomous control methods for wheeled
vehicles are being researched in terms of both driving and operations. However,
this research usually focuses on the reliability, safety and efficiency[7]. Vehicles
operate below their specified performance leaving a significant margin for unexpected
situations.

Steering a racing car on the other hand, involves operating at the edge of ve-
hicle’s capabilities and opens entirely new challenges i.e. using the slip as a mean
of overcoming a specific bend, while industrial vehicles must avoid such hazardous
situations at all costs. As the safety requirements are lower, it is possible to use
approximative methods which behaviors cannot be predicted or proven safe, but
which offer a better driving performance in the mean case. Autonomous drivers are
also interesting due to the possibility of objective algorithm evaluation against an
other algorithm or a human.

Figure 1.1: Reliability is one of the top concerns in industrial automation.
https://www.youtube.com/watch?v=ww57ZtE53Ic

7

 https://www.youtube.com/watch?v=ww57ZtE53Ic

8 CHAPTER 1. INTRODUCTION

1.2 The HingyBot

This study presents an autonomously driving program (named HingyBot), which
was integrated with two virtual environments attempting to faithfully represent be-
havior of a physical racing car. The first environment is an open source game TORCS
and the second is a modern game engine Unreal Engine 4.

In the past, there were held competitions between autonomous drivers. The
most popular competition was the Simulated Car Racing Championship (SCRC)
organized at many artificial intelligence-related conferences: GECCO, CIG, CEC.
HingyBot is therefore written to follow this competition formula, which gives the
performance of other drivers for comparison and makes it easy to compete if such
competition will be organized in future.

1.3 TORCS

TORCS (the open source car simulator[4]) features a realistic car simulation
model that takes into account such details as individual wheel traction, aerodynam-
ics, and fuel consumption. It also simulates the engine of the car and provides a
simple damage model.
While it is still mostly a game, its above-mentioned characteristics and existing
infrastructure for bots and tracks construction makes it popular in the scientific re-
search community. It is especially useful studying problems involving evolutionary
algorithms, path optimization or autonomous vehicle movement.

Figure 1.2: Example of the TORCS visuals.

1.4. SIMULATED CAR RACING CHAMPIONSHIP 9

1.4 Simulated Car Racing Championship

1.4.1 Rules

The SCRC is a racing competition for autonomous drivers that uses TORCS
game as a simulation environment[3]. Its rules are as follows:

• Car type used in the competition is the same for all participating drivers and
known beforehand.

• All data the autonomous driver has available is coming from the car’s sensors
which describe local environment, especially the geometry of the track is not
given.

• Before autonomous driver’s performance is measured, five warm-up laps with
a time limit are given. During this time, the bot can freely drive and store
any data for usage in the actual race,

• During the warm-up section and the racing section sensors of the car are
artificially noised in order to simulate the real-world application.

1.4.2 Technical details

Organizers have published a modified TORCS version that hosts a game server.
They also provide a bot template that connects to the server via UDP socket and,
depending on the server configuration races either alone or with other bots and
players. For technical reasons HingyBot is written entirely from scratch and does
not use the above-mentioned template.

10 CHAPTER 1. INTRODUCTION

1.4.3 Car input and output

Table 1.1: Sensors of the car (as presented in [3])

Name Range (unit) Description

angle [−π, +π] (rad) Time elapsed during current lap.

curLapTime [0, +∞) (m) Angle between the car direction and the direction of the
track axis.

damage [0, +∞) (point) Current damage of the car (the higher is the value the
larger is the damage).

forwardpostion [0, +∞) (m) Distance from the start line along the track line.

distraced [0, +∞) (m) Distance covered by the car from the beginning of the race

focus [0, 200) (m) Vector of 5 range finder sensors: each sensor returns the
distance between the track edge and the car within a range
of 200 meters. When noisy option is enabled (see Section
7) sensors are affected by i.i.d. normal noises with a stan-
dard deviation equal to the 1% of the sensors range. The
sensors sample, with a resolution of one degree, a five
degree space along a specific direction provided by the
client (the direction is defined with the focus command
and must be in the range [-90,+90] degrees w.r.t. the car
axis). Focus sensors are not always available: they can be
used only once per second of simulated time. When the
car is outside of the track (i.e., crossposition is less than
-1 or greater than 1), the focus direction is outside the
allowed range ([-90,+90] degrees) or the sensors has been
already used once in the last second, the returned values
are not reliable (typically -1 is returned).

fuel [0, +∞) (l) Current fuel level.

gear {-1, 0, 1, ..., 6} Current gear: -1 is reverse, 0 is neutral and values from 1
to 6 are the normal gears.

lastLapTime [0, +∞) (s) Time to complete the last lap.

opponents [0, 200] (m) Vector of 36 opponent sensors: each sensor covers a span
of 10 degrees within a range of 200 meters and returns
the distance of the closest opponent in the covered area.
When noisy option is enabled (see Section 7), sensors are
affected by i.i.d. normal noises with a standard deviation
equal to the 2around the car, spanning clockwise from -
180 degrees up to +180 degrees with respect to the car
axis.

racePos {1, 2, 3, ..., N} Position in the race with respect to the other cars.

rpm [0, +∞) (Hz) Number of rotation per minute of the car engine.

1.4. SIMULATED CAR RACING CHAMPIONSHIP 11

Name Range (unit) Description

speedX (−∞,+∞) (km/h) Speed of the car along the longitudinal axis of the
car.

speedY (−∞,+∞) (km/h) Speed of the car along the transverse axis of the car.

speedZ (−∞,+∞) (km/h) Speed of the car along the Z axis of the car.

track [0,200] (m) Vector of 19 range finder sensors: each sensors re-
turns the distance between the track edge and the
car within a range of 200 meters. When noisy op-
tion is enabled (see Section 7), sensors are affected
by i.i.d. normal noises with a standard deviation
equal to the 10% of sensors range. By default, the
sensors sample the space in front of the car every
10 degrees, spanning clockwise from -90 degrees up
to +90 degrees with respect to the car axis. How-
ever, the configuration of the range finder sensors
(i.e., the angle w.r.t. the car axis) can be set by
the client once during initialization, i.e., before the
beginning of each race.

crossposition [-1,1] Distance between the car and the track axis. The
value is normalized w.r.t. the track width: it is 0
when car is on the axis, -1 when the car is on the
right edge of the track and +1 when it is on the left
edge of the car. Values greater than 1 or smaller
than -1 mean that the car is outside of the track.

wheelSpinVel [0,+∞) (rad/s) Vector of 4 sensors representing the rotation speed
of Wheels.

z (−∞,+∞) (m) Position along the Z axis.

Table 1.2: Car steering (as presented in [3])

Name Range (unit) Description

accel (−∞, +∞) (km/h) Virtual gas pedal (0 means no gas, 1 full gas).

brake (−∞, +∞) (km/h) Virtual brake pedal (0 means no brake, 1 full brake).

clutch (−∞, +∞) (km/h) Virtual clutch pedal (0 means no clutch, 1 full clutch).

gear {-1, 0, 1, ..., 6} Current gear.

steering [-1,1] Steering value: -1 and +1 means respectively full right
and left, that corresponds to the angle of 0.366519
rad.

focus [0,+∞) (rad/s) Focus direction (see the focus sensors in Table 1.1).

meta (−∞, +∞) (m) This is a meta-control command: 0 do nothing, 1 ask
competition server to restart the race.

12 CHAPTER 1. INTRODUCTION

1.4.4 Existing approaches and studies

• Racing games usually employ simplistic, but reliable methods.
It is common that the optimal racing line is drawn by a human domain expert
and later corrected by algorithms specially designed for each particular case.
Even when some complex methods are employed, like in the first racing game
to feature artificial neural networks: Colin McRae Rally 2.0, the racing line
is still hardcoded into a game and the ANN is used only to keep the car on
it[5, 9].

• Genetic algorithm was used by Cardamone et al. for racing line computation
for TORCS[8]. When it was published in 2010 it was considered the best
artificial driver. However, this solution requires full and exact knowledge of
the track’s geometry.

• A bot using the Monte Carlo Tree Search was implemented with a good
result[6]. The method uses a regression analysis-based forward model, complex
evaluation function and records track during the before-mentioned warm-up
time. Identically to the HingyBot, it represents geometry of the track with re-
spect to both the car’s sensor space and absolute Euclidean coordinate system.
It allows to plan the path with absolute coordinates and then do low-level path
following with respect to the car’s sensor.

• Gene Regulatory Networks are used in the winner of SCRC 2015, the
GRNDriver[1]. This evolutionary algorithm was inspired by processes re-
sponsible for the control functions of the biological cells.
During most of the race GRNs are the only mechanism controlling the GRN-
Driver.

• Various online neuroevolution strategies were tested by before-mentioned
Cardamone et al[10]. In one particular experiment, the authors evolved a sepa-
rate artificial neural network champion for each track. Then those champions
were used to seed the evolution of drivers for other tracks improving both
evolution speed and final performance of the best individual.

Chapter 2

Evolutionary approach

2.1 Infrastructure

The autonomous driver presented in this study was developed along with various
tools. The first one is an automated tester that concurrently runs the race instances
defined in an .xml file and outputs performance of the bot. The second one is
an evolutionary trainer that uses the tester to train evolutionary algorithms that
implement a simple interface.

.

Figure 2.1: Interface with the testing tool.

13

14 CHAPTER 2. EVOLUTIONARY APPROACH

As configuration of the bot, tester, and the trainer is entirely done through
the .xml files and runtime arguments, another tool is provided for configuration
validation and automation.

All the tools are designed so they can be used with other bots, other evolutionary
algorithms or for different goals, like procedural content generation.

2.2 Parameters searching

HingyBot uses many constant parameters for almost any function (>30 in total).
Some of those parameters are different for each car type, bot configuration etc.
To find the optimal values for those parameters and test the evolutionary system
a simple genetic algorithm was implemented. It stores all parameters in an array
which is randomly mutated and uniformly crossed over with other individuals.
This method found much better parameters than two humans could and was even
able to find the optimal evolutionary parameters for itself.

2.3 Gene Regulatory Networks

2.3.1 In biology

GRNs are biological systems that regulate metabolism of the living cells[11].
Based on concentrations of certain regulatory proteins they change transcription
rate of genes, which further effects concentrations of those proteins.
Cellular organelles are sensitive to change of proteins concentrations, which affects
their behavior and guides them through the life cycle of the cell.

2.3.2 In evolutionary computation

HingyBot uses a biology-inspired model of GRNs for regulatory purposes. Dur-
ing the simulation, while controlling an agent, the model can be imagined as a
weighted and directed graph consisting:

• n abstract proteins as vertices of the graph.

• n numbers from 0 to 1, each one assigned to other protein. Their values
describe state of the network in certain point of simulation. They are analog
to the concentrations of biological proteins.

• regulatory edges, which describe how concentration of each protein effects
concentration of other proteins through time.

2.3. GENE REGULATORY NETWORKS 15

Proteins are divided into three types:

• Input proteins, which are used for feeding the GRN data from the external
world. For example, when using the GRN for speed control we provide speed
information by artificially changing concentration of the certain protein to a
value proportional to the current speed.

• Output proteins, which provide output of the network. They come in pairs (c1
and c2) for each output value. In our example, we want the GRN to output
desired gas pedal pressure, so we calculate it with measuring concentrations
of two output proteins assigned to the gas pedal:

gas = c1−c2
c1+c2

.

• Regulatory proteins, which regulate and are regulated by other proteins.

Numbers or input and output proteins are determined by the system that the
GRN is supposed to steer. Regulatory edges and the number of regulatory proteins
describe an individual GRN and are subjected to evolution. There are two kinds of
regulatory edges:

• enhancing edges, which describe how protein enhances concentration of other
proteins,

• inhibiting edges, which describe how protein decreases concentration of other
proteins.

At beginning of the simulation all concentrations are set to a specific value. Then,
in each simulation step each protein’s p concentration is changed according to the
following formula:

c′p = cp +
d

n

n∑
i

ci[E(i, p)− I(i, p)]

where:

c′p is new p concentration,

cp is old p concentration,

d is parameter describing dynamics of the regulation,

n is number of proteins,

E(i, p) is weight of the enhancing edge from i to p,

I(i, p) is weight of the inhibiting edge from i to p.

16 CHAPTER 2. EVOLUTIONARY APPROACH

Because concentrations are not reseted between simulation steps, the output of
the GRN is determined not only by the current input state but also by all previous
states filtered by the regulatory behavior. This makes GRNs suitable for a wide range
of applications ranging from the signal processing to the black box optimization.

Input
1

Input
2

Input
3

Reg.
1

Reg.
2

Out
1

Out
2

Car speed Distance
to obstacle

Track’s
curvature

Gas pedal

Figure 2.2: Example GRN model (not the one HingyBot uses).

Chapter 3

Track recording

It is highly beneficial to have an approximative geometry of the entire track, as it
can be used to employ advanced path planning techniques. The HingyBot performs
a fundamental recording during the first warm-up lap. As speed of the wheels is
given precisely, we can use it for absolute direction estimation, provided we will have
excellent traction during the entire recording process. We drive the whole first lap
with very low speed and keep our car in the middle using the crossposition sensor.
Using speed difference of the wheels we are able to calculate approximate absolute
heading for each forwardposition t:

ht = f

∫ t

0
lx − rxdx

where:

lx is rotation speed of the left wheel at forwardposition x,

rx is rotation speed of the right wheel at forwardposition x.

The f is a parameter describing proportion between wheels speed difference
over constant period of time and change of heading during the same period.
Because the track makes known k full turns we find this parameter once for each
car type by solving for f :

f

∫ 1

0
lx − rxdx = k2π.

Using absolute heading information we can calculate geometry of the whole
middle lane:

xt =

∫ t

0

lx + rx
2

cos(hx)dx,

yt =

∫ t

0

lx + rx
2

sin(hx)dx.

17

18 CHAPTER 3. TRACK RECORDING

To find geometry of the track’s bounds we simply use our left and right distance
sensors.

Although rotational speed of the wheels is given almost exact (that is realistic
due to the precision of modern rotation sensors) it still produces an error which
will accumulate to considerable values, especially in further parts of the track. It is
therefore very beneficial to transform track’s geometry into car’s sensor space using
forwardposition and angle sensors. In such case the autonomous driver will only
suffer misrepresentation of the local bend, but not all the bends behind him.

.

Figure 3.1: Example TORCS track to be recorded.

.

Figure 3.2: Track geometry created by the recording process.

Chapter 4

Path planning

Before the beginning of the actual race, an optimal driving line is computed.
For the line to be optimal, we prefer it to be as short as possible and its bends to
be as gentle as possible. Those requirements are sometimes exclusive.

In order to compute line that fulfills those requirements, we will use a simulated
physical system, which will transform the racing line to more efficient one at every
iteration of the simulation. We start with racing line produced by traveling the track
and calculating mean position between the bounds. We define such curve as the
centerline. Now, we approximate the centerline as a sequence of straight segments.
We define points joining the segments as hinges (red) and lines connecting the joints
as tubes (black).

.

Hinges and tubes are the elements of our physical model. Hinges are free to
move along the lines perpendicular to the centerline, but they cannot pass the track’s
bound. Tubes are always straight but able to stretch or shorten. Position, rotation
and length of the tubes are determined by position of the hinges they are connecting.
The system is two-dimensional, tubes have no mass, there are no friction forces and
no inertia.

There are two forces working in our system:

19

20 CHAPTER 4. PATH PLANNING

• The pulling force (orange), which represents our desire for the line to be as
short as possible. This force is applied for each tube to its adjacent hinges.
They are pulled towards each other with the force proportional to the length
of a tube. This force can be intuitively imagined as if there were springs
inside our telescopic tubes. Using this force alone, the resulting racing line
will convergence to the convex shell of the inner bound of the track.

.

• The straightening force (blue), which represents our desire for the racing
line’s curvature to be lowest. This force is applied for each hinge for it and to
its neighbors. It can be intuitively imagined as if there were springs inside the
hinges which are trying to straighten the hinge. Direction of the force applied
to neighboring hinges is directed perpendicular to the tube and turned to
straighten the hinge. The force is proportional to the square of the angle α
(the angle between the current tube and the extension of the adjacent tube).

An opposite force is exerted on the central hinge (the one containing a spring)
from the action-reaction principle.

.

21

At each iteration, a new hinge position computed by the following formula is
snapped to the closest possible point.

P ′ = P +
fs(~Frl + ~Frr − ~Fal − ~Far) + fp(~Fpl − ~Fpr)

m

where:

P ′ is new hinge position,

P is old hinge position,
~Frl is straightening force applied by the left neighbour,
~Frr is straightening force applied by the right neighbour,
~Fal is straightening force applied to the left neighbour,
~Far is straightening force applied to the right neighbour,
~Fpl is pulling force applied by the left tube,
~Fpr is pulling force applied by the right tube,

fs is straightening force factor parameter,

fp is pulling force factor parameter,

m is hinge mass factor parameter.

Optimal proportion fs
fp

depends on the car’s turning capabilities and is chosen ex-
perimentally for each car. The lower the m parameter, the fewer system iterations
are required for a desired convergence. It is beneficial to find as low m as possible,
but high enough for the system to remain stable. Then, as the system develops and
straightening forces decrease, m can be further lowered to accelerate the convergence.

Figure 4.1: Example optimal path calculated by the Path Planning Module.

22 CHAPTER 4. PATH PLANNING

(a) Initial state (b) after 50 iterations

(c) after 500 iterations (d) after 5000 iterations

Figure 4.2: Track development

Chapter 5

Speed planning

5.1 Backwards-traveling agent

After the optimal driving line has been computed, desired speed for each tube
is calculated according to the following formula:

St = sb + sfEt

where:

St is desired speed at tube t,

sb is speed base parameter,

sf is speed factor parameter,

Et is ’energy’ at hinge connected to tube’s t more forward end.

Energy is calculated for each hinge traveling backwards, starting from the first
behind the start line (En = 1) according to the following formula:

Et−1 = Et + lt(∆− p1|αt| − p2|α3
t |),

where:

Et is new energy clamped to < 0, 1 >,

Et−1 is previously calculated energy of the next hinge t,

αt is heading change at hinge t,

∆ is parameter loosely related to the car’s braking capabilities,

lt length of the tube t,

p1, p2 are parameters decribing how track’s curvature

should decrease speed,

n index of the last hinge.

23

24 CHAPTER 5. SPEED PLANNING

.

Figure 5.1: Example ’energy’ output of an agent.

5.2 Gene Regulatory Network

Before-mentioned Gene Regulatory Networks can be used as another source of
desired speed estimation. Each combination of the following implementations were
tested:

Online vs offline

• Online: as the car drives the track, surrounding bounds geometry is fed to the
Gene Regulatory Network in real time. Data comes from both the recorded
track and car’s sensors.

• Offline: Gene Regulatory Network is quickly run through the recorded track
and its results are executed later.

Assisted vs unassisted

• Assisted: Gene Regulatory Network has the agent’s desired speed available
as one of the inputs.

• Unassisted: Gene Regulatory Network must calculate the speed basing solely
on the track’s geometry. This is useful for initial GRN learning, because it
prevents a population from falling into some local maximum in which GRN
repeats speed of the agent.

5.3 Dangerousness metric

Each track has usually one or two bends that are significantly more difficult than
others. When we try to find an optimal speed factor, we often can either choose it

5.4. USING THE SPEED PLAN TO OPTIMIZE THE TRAJECTORY 25

for the hardest bend or a mean one. In the first case, we will never crash, but we
will lose a lot of time on almost every bend. In the second case, we will have an
overall good performance, but if we crash on the hardest bend it will make matters
worse than in the first case. This failure of the previously described speed planning
algorithm can be neutralized by using four remaining warm-up laps. We choose
speed factor optimal for a typical bend, and try to drive around the track. If we
crash, we artificially lower desired speed at segments preceding the unfortunate bend
to a value that will guarantee safe pass at the trial. During next laps we increase the
desired speed at those segments a little bit until we crash again. Our final speed at
those segments is the highest speed at which we passed the bend without crashing.

5.4 Using the speed plan to optimize the trajectory

After calculating desired speed on each segment, we can use this information
to improve geometry of the track. To do so, we increase pulling to straightening
force ratio in regions with low desired speed and vice versa. After that, we can use
modified racing line’s geometry to recalculate corrected desired speeds. We use the
spare computational time for repeating this process during the whole race.

Chapter 6

Drive plan execution

6.1 Transition into sensor space

Geometry of the track is stored in absolute, Euclidean coordinate format, whereas
sensor data comes in respect to the car. One way is to estimate absolute car posi-
tion and perform computation in absolute coordinates. The HingyBot uses another
method. It assumes that car’s absolute heading corrected by the angle sensor equals
to the absolute racing line’s heading at current forwardposition of the car. Us-
ing this information, track geometry is translated into sensors space rooted in the
car, computations are performed and results are translated back into the absolute
coordinate system.

6.2 Transmission

A simple automatic transmission was implemented so the regulatory part only
needs to provide desired speed change from −1 to 1. It increases the gear when
RPM of the engine surpasses a certain threshold, and decreases it when RPM falls
below another threshold.

There is an unresolved inefficiency of the transmission, because HingyBot ac-
celerates significantly slower than bots bundled with TORCS at very low and very
high speeds.

6.3 Cascade PID controller

In order to keep the car on the optimal racing line two Proportional-Integral-
Derivative (PID) controllers are used. The first one is responsible for matching car’s
heading with the heading of the racing line. The second one keeps car’s crossposition
on the racing line by modifying first regulator’s desired heading.

27

28 CHAPTER 6. DRIVE PLAN EXECUTION

PID regulators controlling the steering wheel are dynamically tuned based on
the speed information.

A separate PID controller is used for controlling the speed of the car.

Figure 6.1: A simplified control diagram of the HingyBot.

6.4 Collision avoidance

No collision avoidance against other cars was implemented. Due to the good
PID tunning, collisions in 1v1 race are even preferable.

6.5 Returning to track

In case of collision, the PID controllers are expected to handle the situation
without any hard-coded behaviors. The HingyBot only executes such behaviors if
the situation is unrecoverable i.e. in case of getting stuck or reversed. It can do a
multiple point-turn if rotated backward or reverse out if stuck beyond the racing
road.

Chapter 7

Results

Figure 7.1: HingyBot about to complete the final lap on the Alpine1 track. Note
significant lead distance in comparison to other bots on the minimap.

7.1 Racing against humans

HingyBot does well when racing against human players. It was tested against
two humans with experience in racing and arcade games. It wins most of the time.
The best strategy against the bot is to force a collision that will lead it unrecoverable
situation. Even though it is more effective than the usual way, it is dangerous and

29

30 CHAPTER 7. RESULTS

because of finely-tuned PID regulatory the HingyBot is usually expected to handle
the collision better than the human player. Not counting such collisions, it took the
human players respectively twenty-one and thirty trials to beat the HingyBot on an
unfamiliar track.
This is more than enough performance to use the HingyBot in a racing game, in
which bots sometimes struggle to defeat a human player despite having absolute
knowledge or even cheating.

7.2 Racing against the TORCS bots

HingyBot was put against all bots which come bundled with TORCS and have
the SCRC car available. It was tested on three tracks and the races took three laps.
HingyBot is named as the scr server1 or scr server3.

It is important to note that bots embedded in TORCS have absolute knowledge
about the track geometry, opponents position, and they don’t have any noise on
this data.[4]

7.3. RACING AGAINST THE SCRC2015 CHAMPION 31

The HingyBot was also always placed at the last starting position, meaning it had
to take over all its opponents and do not suffer a fatal collision in this process.

7.3 Racing against the SCRC2015 champion

The last SCR competition was organized in 2015. Its winner was the before-
mentioned GRNDriver, which relies on the Gene Regulatory Networks, evolution
strategies for them, and the dangerousness metric[12].

The GRNDriver used for comparison below has all features and speed opti-
mizations enabled.[2] Eight tracks with ten laps were used. One of the tracks had a
dirt-type surface (Zlovenovice).

Track
HingyBot
time [s]

GRNDriver[2]
time [s]

Percentage difference

CG Speedway 1 422 415 1.91%

Alpine 1 1356.3 1579 -14.1%

Street 1 846.4 922 -8.2%

Noceda-city 596.8 579 3.06%

Emero City 647.5 677 -4.35%

Mikegardy-hill 750.98 751 0%

Senhor-hill 800.5 798 0.3%

Zlovenovice 733.2 772 -5.02%

Table 7.1: Peformance comparsion between the HingyBot and the GRNDriver.

HingyBot in its current state cannot handle jump ramps or certain tracks with
dirt surface, so they are not included in the performance comparison.
Despite this, selected tracks are very diverse in their geometries. They all differ and
represent many combinations of track width, turns geometry, change in elevation
and turns sequences. HingyBot seems to be working best on narrow, dangerous,
and complex tracks like Alpine1 or Street1 due to very efficient path planning and
regulation.
However, it suffers from poor optimal speed estimation on broader tracks, where
turns happen slower.
It is interesting to note that HingyBot’s relative performance is best on the Alpine1
track, which belongs to the GRNDriver’s primary learning set.

32 CHAPTER 7. RESULTS

7.4 Further improvements

Many experimental features of the HingyBot were disabled. They all have
expected or shown improvement in certain situations, but are still unreliable. Using
them is likely to result in a fatal crash, which will outweigh any of their advances.

Those include:

• Gene Regulatory Network for the speedplan correction,

• Dangerousness metric (note it was enabled for the GRNDriver),

• advanced, dynamic PID tunning for a better control in unusual cases,

• online racing line optimization for further improvements of the racing line
shape,

• online track’s geometry correction for better path representation,

• overtaking strategies which will reduce risk of the car destruction during over-
taking with large speed difference,

• advanced return to optimal racing line after unusual situations, like a crash.

With these features implemented reliably, performance of the HingyBot is ex-
pected to be even better.

Bibliography

[1] SCRC 2015 ladderboard. http://cs.adelaide.edu.au/~optlog/SCR2015/
awards.html.

[2] Stéphane Sanchez; Sylvain Cussat-Blanc. Gene regulated car driving: Using a
gene regulatory network to drive a virtual car. Springer, 2014. p. 29.

[3] Luigi Cardamone Daniele Loiacono and Pier Luca Lanzi. Simulated Car Racing
Championship Competition Software Manual. April 2013.

[4] Erica Espié and Christophea Guionneau. TORCS game engine. 2001.

[5] Ralf Herbrich and Applied Games Group Thore Graepel; Microsoft Re-
search Cambridge. Playing Machines: Machine Learning Applications in Com-
puter Games. ICML, 2008.

[6] Mathias Vielwerth Julian Togelius Sebastian Risi1 Jacob Fischer, Nikolaj Fal-
sted. Monte Carlo Tree Search for Simulated Car Racing. 2008.

[7] Dhruv Mittal James Martin, Namhoon Kim and Micaiah Chisholm. Certifica-
tion for Autonomous Vehicles.

[8] P. Lanzi L. Cardamone, D. Loiacono and A. Bardelli. Searching for the opti-
mal racing line using genetic algorithms. IEEE Symposium on Computational
Intelligence and Games, 2010.

[9] Stefano Lecchi. Artificial intelligence in racing games. ACM, 2009.

[10] Daniele Loiacono Luigi Cardamone and Pier Luca Lanzi. Learning to Drive in
the Open Racing Car Simulator Using Online Neuroevolution. IEEE Symposion
on Computional Intelligence and AI in Games, 2014.

[11] Lesley T. MacNeil and Albertha J.M. Walhout. Gene regulatory networks and
the role of robustness and stochasticity in the control of gene expression. Cold
Spring Harbor Laboratory Press, 2011.

[12] Stéphane Sanchez Sylvain Cussat-Blanc, Jean Disset. Dangerousness Metric
for Gene Regulated Car Driving. Springer, 2016.

33

http://cs.adelaide.edu.au/~optlog/SCR2015/awards.html
http://cs.adelaide.edu.au/~optlog/SCR2015/awards.html

	Introduction
	The real world
	The HingyBot
	TORCS
	Simulated Car Racing Championship
	Rules
	Technical details
	Car input and output
	Existing approaches and studies

	Evolutionary approach
	Infrastructure
	Parameters searching
	Gene Regulatory Networks
	In biology
	In evolutionary computation

	Track recording
	Path planning
	Speed planning
	Backwards-traveling agent
	Gene Regulatory Network
	Dangerousness metric
	Using the speed plan to optimize the trajectory

	Drive plan execution
	Transition into sensor space
	Transmission
	Cascade PID controller
	Collision avoidance
	Returning to track

	Results
	Racing against humans
	Racing against the TORCS bots
	Racing against the SCRC2015 champion
	Further improvements

