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Abstract

In this work, we deal with the scenario, where the fitness function is
non-deterministic, and moreover its value, even for a given problem instance, is
impossible to calculate exactly and can only be estimated. Such a situation occurs
in popular strategy card games (e.g., Hearthstone, TES: Legends), during the
”arena” game mode, where before the match, a player has to construct his deck,
choosing his cards one by one from the previously unknown options.

We evolve a card-choice strategy for the programming game Legends of Code
and Magic that learns to make a successful choice regardless of the available options,
calculating the fitness value is estimated via the simulation-based method.

We investigate the performances of various approaches and propose a variant
of the evolutionary algorithm that uses a concept of an ”active gene” to reduce
the range of the operators only to generation-specific subsequences of the genotype.
Performed experiments show the behavior of this type of algorithms, and points out
the variants that tend to learn faster and produce statistically better strategies.

W tej pracy rozpatrujemy przypadek niedeterministycznej funkcji celu, której
wartość, nawet w pojedynczym przypadku, jest nieobliczalna i może być tylko
szacowana. Takie sytuacje mają miejsce w popularnych strategicznych grach
karcianych (np. Hearthstone, TES: Legends) w trybie gry zwanym „areną”, gdzie
przed meczem gracz musi ułożyć swoją talię, wybierając karty po jednej
z nieznanych mu wcześniej propozycji.

Ewoluujemy strategię wyboru kart dla programistycznej gry Legends of Code
and Magic w celu wyboru najlepszej, niezależnie od możliwych wyborów, poprzez
estymowanie funkcji celu metodą symulacji.

Analizujemy wyniki różnych podejść i proponujemy wariant algorytmu
ewolucyjnego, który wykorzystuje koncepcję „aktywnego genu” w celu zmniejszenia
zakresu operatorów do zależnych od generacji fragmentów genotypu. Wykonane
eksperymenty ukazują zachowanie tego typów algorytmów i wskazują, które
warianty uczą się szybciej i prowadzą do statystycznie lepszych strategii.
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Chapter 1

Introduction

Currently, not only classical board games like Chess [1] and Go [2] are used as ”grand
challenges” for AI research. It has been shown, that modern computer games may
also have this role. So far presented approaches to beat the best human players in
Dota 2 [3] and StarCraft II [4], are one of the most spectacular and media-impacting
demonstrations of AI capabilities.

The accent is especially put on the certain game features, that makes designing
successful AI players especially difficult, e.g. imperfect information, randomness,
long term planning, and large action space. One of the game genres containing all
these game features is Strategy Card Games, also known as Collectible Card Games.

Recently, numerous research has been conducted in this domain, focusing
mainly on MCTS-based approaches to create an agent and creating the deck
recommendation systems that will choose the right set of cards to play. The first
Hearthstone AI Competition [5], with the goal to develop the best agent for the
game Hearthstone [6] was organized during the IEEE CIG conference in 2018, and
the AAIA’17 Data Mining Challenge: Helping AI to Play Hearthstone [7] was
focused on developing a scoring model for predicting win chances of a player, based
on single game state data.

This work is the first approach to build a deck recommendation system for the
arena mode where, unlike the other modes where players can use their full set of
cards, players draft a deck from a random selection of cards before every game.
Such task is characterized by even larger domain (considering all possibilities of
available choices), higher non-determinism (the additional card selection phase is
non-deterministic), and harder opponent-prediction.

We propose a variant of the evolutionary algorithm that uses a concept of an
”active gene” to reduce the range of the operators only to specific subsequences of
the genotype that changes from generation to generation. Individuals forming the
next population are no longer selected among the parents/offspring populations, but
instead, they are merged from their representatives.
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8 CHAPTER 1. INTRODUCTION

We have conducted a series of experiments to estimate the performance of
multiple variants of designed algorithms and compare it to a number of
human-made and random baselines. We used the programming game Legends of
Code and Magic [8], designed especially for handling AI vs. AI games. Algorithms
learn on a small sample of random drafts (available card choices) and are tested on
the larger number of other drafts. Both processes use game simulations with
multiple repetitions to estimate fitness value in such highly non-deterministic
environment. The results show that some of the introduced active genes variants
perform better than other tested approaches.



Chapter 2

Background

2.1 Strategy Card Games

Strategy Card Game (SCG) is a broad genre of both board and digital games.
Starting with Magic: the Gathering [9] in early 90s, or more recent Hearthstone [6]
and The Elder Scrolls: Legends [10], a huge number of similar games have been
created.

The mechanics differ between games, but basics are similar. Two players with
their decks draw an initial set of cards in their hand, then the actual play begins. A
single turn consists of a few moves, like playing a card or using an onboard card. The
game ends as soon as one of the players wins, most often by getting their opponent’s
health to zero.

A typical SCG characterizes with a large number of playable cards (over 900
in TESL and almost 20,000 in MtG), which causes an enormous amount of possible
decks compositions. This leads to even bigger in-play search space, as the player
does not know the order of their next draws, the content of the opponent’s deck nor
his in-hand cards. Such numbers tend to increase the importance of randomness.

It is also common, to observe a metagame level of such games. It describes the
popularity of certain decks or cards. On a top-level, meta creates a possibility to
compare different decks on a larger scale. Most often it boils down to ”rock-paper-
scissors” scheme, but with a larger number of possible types.

2.2 Related Work

Because of the popularity of the game, and available AI simulators, most research
has been conducted for Hearthstone, including mentioned before AI competition [5]
and data mining challenge [7].

9
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Usually, AI agents are based on the Monte Carlo Tree Search algorithm [11], as it
is known to perform well in noisy environments with imperfect information. In some
variants [12], which use a pre-analyzed database of decks, and expert knowledge to
guide MCTS simulations and heuristic-based state evaluation functions, has been
tested against a few chosen meta decks.

The authors of [13] combines MCTS with neural networks and focuses on
organizing the search space to reduce its size. Firstly, they propose chance event
bucketing to ensure uniform sampling across the choices that are significantly
different. Secondly, they distinguish high-level actions (cards applied from the
player’s hand) from the low-level ones (onboard actions) and show that it is
possible to achieve good performance by learning the proper behavior only for the
high-level ones while using simple policies for the remaining moves.

Another approach that combines MCTS with supervised learning of neural
networks has been presented in [14]. This agent uses a novel approach to learn the
game state representation based on the word embeddings [15] of the actual card
descriptions.

Other attempts rather focus on understanding the game while it is played.
Either by predicting the content of the opponent’s deck and cards that he is likely
to play during a game [16], or by predicting a probability of winning, as in [17]. The
latter, authored by the winner of AAIA’17 Data Mining Challenge describes and
compares various neural networks architectures that can be used for the task.

The most relevant to our research is a deckbuilding task. So far, all
approaches focus on constructing decks statically, from unrestricted sets of cards,
and usually test their performance against a small number of predefined
human-created decks as in [18]. This work is based on the evolutionary algorithms,
which is the leading technique for deckbuilding task, applied not only to
Hearthstone, but also Magic: the Gathering [19]. On the other hand, a neural
network-based approach to the same task has been presented in [20].

Methods for estimating card values that are useful to arena mode has not
been yet subject to proper research, although they are popular among human
game players. There exist dedicated web pages and game-helping software that
recommends cards [21, 22]. The data they are based on is constantly updated and
consists of a mix of expert domain knowledge, mathematical formulas, and
remarks made by players on public forums.
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2.3 Legends of Code and Magic

Legends of Code and Magic (LOCM) [8] is a small implementation of a Strategy
Card Game, designed to perform AI research. Its advantage over the real card game
AI engines is that it is much simpler to handle by the agents, and thus allows testing
more sophisticated algorithms and quickly implement theoretical ideas.

All cards effects are deterministic. Thus the non-determinism is introduced only
by the ordering of cards and unknown opponent’s deck. The game board consists of
two lines (similarly as in The Elder Scrolls: Legends), so it favors deeper strategic
thinking. Also, LOCM is based on the fair arena mode, i.e., before every game,
both players create their decks secretly from the symmetrical yet limited choices.
Because of that, the deckbuilding is dynamic and cannot be simply reduced to using
human-created top-meta decks.

LOCM is one of the competitions accepted for the IEEE Congress of
Evolutionary Computation 2019, under the name of Strategy Card Game AI
Competition [23]. So far, the game in a slightly simplified (one lane) form has been
used in August 2018 as a CodinGame platform contest, attracting more than 2,000
players (or rather AI programmers) across the world [24]. Fig. 2.1 shows the
visualization in the middle of the game.

The big advantage of LOCM for our research is that it is the only game allowing
fair AI comparison without much meta influence. As the card choices for the players
are different each time, and both players have exactly the same decisions in this
phase (which is not true in arena mode in existing computer games, where every
created deck is used in several games versus players that had other choices to make).

Figure 2.1: Legends of Code and Magic – in-game visualization.



12 CHAPTER 2. BACKGROUND

When it comes to the in-game mechanics, LOCM stays in align with the TES: L.
There are two types of cards: creatures and items. Each card has three basic
attributes (attack, cost, and defense), three additional attributes, triggered when
the card is played, and a set of keywords. These additional properties include a
bonus card draw and modifications of own and enemy’s health.

Keywords are the special card abilities. There is six of them: breakthrough
(deal excess damage to the opponent), charge (summoned creature can attack
immediately), drain (dealt damage heals the owner), guard (must be attacked
first), lethal (kills any creature it damages), and ward (prevents first damage to a
creature). All of these take effect during the creature battle.

Creature cards are played on one of the two lanes. It stays in this lane, as long
as its defense is above zero. Once a turn, each creature with a non-zero attack can
battle any enemy creature in the same lane or attack the enemy directly. While
battling, both creatures deal the damage at the same time.

Item cards are divided into three subtypes: green, red and blue. Green items
can be used on players own creatures, increasing their statistics and/or adding new
keywords. Red items can be used on the enemy creatures, reducing their statistics
and/or removing keywords. Blue items can be used on both the enemy creatures or
the enemy directly.

The game starts with 30 turns of a draft, where both players pick one of three
available cards (same options for both players). Then the actual game begins. Both
players start with 1 mana, used to play the cards. To make it fairer, the second
player receives a bonus of 1 mana, as long as he does not use all of his mana in one
turn.

Each turn starts with a mana recharge and a card draw (usually one card), up
to a maximum of 8 into the hand. Next, the player can play his in-hand cards (as
long as he has enough mana), attack with his creatures, and finally end his turn.
The game ends, when at least one of the player’s health is equal to zero.



Chapter 3

Approach

3.1 Problem Specification

Consider two players, A and B. Before every game, they have to choose their decks,
i.e., subsets of cards that additionally have to fulfill some game-specific constraints.
Then, A and B play against each other, using their playing algorithms and on their
chosen decks, randomly shuffled. Thus, the goal of A is to choose deck DA, and
algorithm AA such that it performs best over every possible combination of DB,
and AB. As for existing SCG’s the number of possible decks and algorithms are
extremely large, research approaches usually focus on one of these tasks and fix the
other as a constant factor. Thus, in our case, we assume both players use the same
playing algorithm (i.e., AA = AB).

As we mentioned before, so far the research focusing on deckbuilding task was
based solely on the scenario where the player (AI) can handcraft any deck from all
of the available cards. Thus, given a fixed algorithm, the goal is to generate deck
DA which has the best win-loss ratio over all possible choices of DB.

To make this task feasible and more real-life, usually only a few DB’s are
considered, chosen among the strong, human-created decks belonging to a
particular meta. The assumption is that the deck good against those
representatives will also be good in general (as other decks should be considered
worse than those meta decks).

However, considering the arena mode, the task becomes significantly more
complicated. Now, the player A is given a set of choices CA in the so-called draft
phase, and he can choose his deck only from the given (usually very limited)
choices. Thus, his goal is to choose the best draft strategy, i.e., a function
CA → DCA

A , such that it performs best over every combination of possible B

strategies CB → DCB
B .

13



14 CHAPTER 3. APPROACH

In existing CCG’s arena modes are asymmetric as in the example above,
meaning CA and CB are usually different. However LOCM, to ensure fair AI
comparison, provides a fair arena mode, thus for each game, a new set of choices C
is generated, and it is the same for both players A and B.

Fitness Function

This is an example of a problem, for which not only the fitness function is random
in a high degree, but even its estimation depends on more random variables.

In such a two-level-deep scenario, a reasonable approach is to sample the space
of possible drafts, and estimate fitness based on the performance of draft strategies
on those samples. To ensure this approach is sound, we expect that the performance
on a low number of training samples is correlated to the performance on a number
of unseen test samples. The results presented in Fig. 3.1, confirms such correlation.
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Figure 3.1: Correlation between % of wins on training (x-axis) and fresh (y-axis)
drafts for evolutionary algorithms learned on 100 drafts and evaluated on 250 drafts
by playing against two human-made, and 3 random draft strategies 250 times.

Domain

Consider a set of all possible cards in the game C. For LOCM, |C| = 160. During
the draft phase, a player collects 30 cards for his deck in turns, in each turn choosing
one of 3 given cards. Thus, given all draws are independent, the number of possible
drafts within the game is (1603)30 ≈ 2.35× 10198.
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During the draft, a player knows his previous pickups but is unaware of the
future choices. Thus, when learning the best draft function, which is our goal, we
search for the best function in the following domain:

(C ∪ {⊥})30 × C3 → {1, 2, 3}, (3.1)

where ⊥ denotes a choice that is yet to make (remaining draft turns), and we
assume the cards to choose from are ordered, so it is enough to pick the position of
the card.

However, this task can be simplified by discarding the information about
previous choices and thus reduces the domain of possible draft strategies to

C3 → {1, 2, 3}. (3.2)

For the practical reasons, it is even more reduced to the pure card-value
assignment: in each turn, the card with greater value is chosen. Although taking
into account more sophisticated relations, including synergies between cards and
controlling a mana curve is no longer possible, this approach is a base for all the
real-game helpers (e.g. [21, 22]).

3.2 Base Algorithm

A straightforward evolutionary-based approach to the problem consists of using
all available training data in each generation to improve chromosomes that encode
priorities of cards.

For genotype representation, we choose a constant-size vector of doubles. Every
gene (from 1 to 160) encodes a priority of the associated card. Thus, during the draft
phase, the card with the highest priority is chosen in each turn. The population is
initialized with the random values between 0.0 and 1.0.

Let n be the size of the population, and dt be the number of available training
drafts. The schema of the base algorithm Eb goes as follows.

To evaluate a population, we play sg games between every two players for each
of dt drafts (with side change after half of the games). Then, we use tournament
selection of size sts to select n

2 parents, based on the number of games won. We use
standard uniform crossover and mutation rate m for changing each game into a
random new number is 0.05. The elitism size is 2.

Thus, to compute g generations, this algorithm has to play CEb
games, where

CEb
= n× (n− 1)× sg × dt × (1 + g). (3.3)
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3.3 Active Genes Algorithms

Evaluating each generation using all available test drafts, although the most robust,
is also time-consuming, and within a constrained computational budget can force
evolution to be shallow.

Alternatively, we propose an approach where each generation is responsible for
learning how to play only one of the available test drafts. Not only this allows to
evolve more generations within the same budget but also makes possible to observe
a more detailed influence of all genes (cards) on a performance of the agents in the
particular scenarios (drafts). To even more emphasize the benefit of this gene-to-
draft-to-outcome correspondence, and partially make up for the loss of generality
this creates, evolutionary operators will be applied selectively.

We say a gene is active in a given generation if the card it encodes appears within
the draft choices. For the sake of evaluation of this generation, all the other genes
are irrelevant. Thus, in this generation, we can perform crossover and mutation
only on the active genes. Moreover, this will prevent the destruction of the so-far
gained knowledge encoded in the inactive genes (which proven itself in the previous
generation).

The drawback of this approach is that we lose a uniform metric that can be
used to compare parents and children across the generations. Thus, to select n

2 pairs
of parents, we perform actual games, testing how they behave on the draft that was
chosen for this generation. For each parent we perform a tournament of size spts = 4

playing spg = 10 games each round. Selected parents create offspring in the same
manner as in the Eb algorithm (uniform crossover, constant mutation rate).

Now, we calculate fitness values for the resulting children population. This is
done in sr rounds, wherein each round we score this population by the so-far wins,
and then play sg games (with side change) between consecutive pairs in order.

The remaining part, selection, is in our approach substituted by a merge.
To create each of n individuals belonging to the next population, we use a
fitness-based roulette to select a child from the offspring population, and a parent
from the parents’ population (in this case, it uses the fitness values from the
previous generation).

We investigated three variants of the merging procedure. First, called Ea, uses
active genes in the most straightforward way. The resulting individual contains
values of the active genes copied from the child, and all the other genes are inherited
from the parent. Thus, the newest knowledge is considered the most important.
Alternatively, Eaw is the variant of the Ea, that uses weighted sum for assigning
values for the active genes. The final value is 0.75 of the parent gene and 0.25 of the
child gene. In this variant, we aim to improve individuals towards good gene values
gradually.
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For comparison, we also test Eall variant, which is based on the same schema
but does not use active genes. Instead, the parent is discarded, and only the child
gene values are inherited.

Partial pseudocode for these algorithms is presented in Fig. 3.2. Here, we
assume that g = dt, which is true for most of the conducted experiments. More
sophisticated variants, breaking this assumption, are described separately in
Section 4.3. Main procedure Evolve proceeds through each generation learning dt

drafts, and calls functions responsible for calculating the children population, and
the merge procedure, as described above. Depending on the algorithm variant, the
MergeIndividuals selects an appropriate merge behavior.

The number of games required to evolve g generations in all these three variants
is equal to

CEa = CEaw = CEall
= n× g × (spts × (spts − 1)× spg + sg × dt). (3.4)
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procedure Evolve(generations, options)
old ← RandomPopulation()
for generation ← 1, generations do

draft ← RandomDraft()
new ← CreateOffspring(draft, old)
old ← MergePopulations(old, new, draft, options)

end for
return old

end procedure

procedure CreateOffspring(draft, old)
new ← EmptyPopulation()
for individual ∈ new do

parents ← SelectParents(draft, old)
children ← Crossover(parents)
individual ← Mutate(children)

end for
ScorePopulation(draft, new)
return new

end procedure

procedure MergePopulations(old, new, draft, options)
merged ← EmptyPopulation()
for individual ∈ merged do

a ← Roulette(old)
b ← Roulette(new)
individual ← MergeIndividuals(a, b, draft, options)

end for
return merged

end procedure

procedure MergeIndividuals(new, old, draft, options)
merged ← Clone(old)
if options.mergeAll then

cardIds ← draft
else

cardIds ← allCardIds
end if
for cardId ∈ cardIds do
if options.weighted then

old[cardId] ← lerp(new[cardId], old[cardId])
else

old[cardId] ← new[cardId]
end if

end for
return merged

end procedure

Figure 3.2: Active genes algorithm variants pseudocode.



Chapter 4

Experiments

We have tested the performance and analyzed the behavior of the proposed variants
of the evolutionary deckbuilding algorithms by playing on a large number of random
drafts using the same game tree search method. Algorithms are trained on a set of
dt random training drafts, and their performance is usually evaluated on a set of
independently randomized de evaluation drafts (see Fig. 3.1 for the justification of
correlation). In most cases, a population of size n = 100 was tested.

To compare the algorithms in a fair manner, we introduce a cost measure, which
is equal to the number of simulated games required to compute the solution, as this
is the most computationally significant factor during the evolution process. The
computational cost for Eb algorithm is calculated according to formula (3.3), and
formula (3.4) describes the cost for the variants with active genes.

To provide a baseline for the quality of evolution, we use two types of
randomly generated solutions. First, called Re creates n random individuals and
plays sg games (with side change) on every training draft between every pair of the
individuals. Individuals with the most games won are selected as representatives.
Thus the computation cost of this method is:

CRe = n× (n− 1)× sg × dt. (4.1)

The second baseline, called Rt, randomizes n individuals and performs a
tournament to select representatives. To determine the winner of each matchup sg

games on every training draft are played, thus the computation cost is

CRt = (n− 1)× sg × dt. (4.2)

We also use two predetermined, human-made card orderings that originate from
the one-lane LOCM contest [25]. Those are called H1 and H2 respectively.

19
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All experiments used a random player for playing, to ensure that we evolve a
general knowledge about card strength and not their relative strength in terms of
given heuristic approach. We have performed a few small-scale experiments with
other algorithms, namely greedy and Monte Carlo Tree Search. Both yield similar
but less significant results. It might be caused by the quality of used heuristics and
the scale itself, and we leave it as a possibility for future research.

In particular, the random strategy leads to a very fast simulation engine.
To be exact, it performs around 10000 full games per second on a decent laptop.

4.1 Algorithm Comparison

We compared the overall results obtained by the Ea, Eall, Eaw, Eb, H1, H2, Re and
Rt algorithms. The results for de = 10, dt = 500, and 5 bests players of 10 runs of
each algorithm (up to the cost of 1,000,000) are presented in Table 4.1.

The process of evolution of Ea, Eall, Eb, and Eaw (and a few more variants we
will discuss in the next section) have been visualized on Fig. 4.1. For each of the
presented algorithms, best 5 individuals from each generation played 50 games on
250 random drafts against H1, H2 and three random individuals. Thus, the results
reported on this chart are larger, as the opponents are less skilled.

Scores of the random players are worse than those obtained by evolution, which
is a clear indication that learning gives a visible advantage. While the human-
authored heuristic H1 performs gains fewer wins than loses, H2 seems to be the
second strongest choice from this set of strategies. (What is interesting, during the
one-lane LOCM contest H1 was established as the meta, thus outperforming other
solutions, including H2.)

Not surprisingly, Eall performs poorly, as its tendency to use only offspring
genes result in a forgetting, which is clearly visible when looking at the evolution
process. More surprisingly, the performance of the straightforward evolution Eb

is also below 50%, and the correlation between performance on the training and
evaluation drafts is the worst (yellow line on the Fig. 3.1).

In Eb, generations took significantly longer to compute. Thus only a few of them
can be finished within the assumed computation budget. It might be the case that
their number is too low to observe learning, yet a few non-exhaustive experiments we
additionally performed showed that the score does not rise significantly even with a
far greater computational budget. So this variant generates average solutions during
the first generation, which he cannot further improve.

On the contrary, the remaining active genes-based approaches Ea and Eaw learn
step-by-step from a low score, need ∼4 times the cost of initial Eb generation to start
performing better, and then they continue learning. Which supports that the idea
of batched learning and selective genetic operators.
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The variant with active genes and weighted merge, Eaw, achieve over 1% higher
results vs strong opponents, and it seems to behave slightly better vs the weaker
ones. In particular, it tends to achieve good performance faster, as it is easier to
stabilize good gene values by weighted sum than by gene copying.

Although the improvements of the order of single percents do seem small, it is
a common thing in such a noisy environment as SCGs, and even that leads to a
long-term gain. Moreover, a comparison between Tab. 4.1 and Fig. 4.1 shows that
even the small advantage over high-performance solutions tends to a significant
advantage over the less skilled opponents.

Table 4.1: Comprehensive comparison of all algorithms. Each was trained 10 times
with computational budget of 1,000,000, yielding 50 best players. Each two played
20 games on 500 random drafts. Whole experiment was repeated 5 times, average
scores and standard variations are presented.

H1 H2 Re Rt

H1 − 48.73 ± 0.60 51.38 ± 0.19 51.23 ± 0.15
H2 51.27 ± 0.60 − 52.87 ± 0.20 52.75 ± 0.20
Re 48.61 ± 0.19 47.12 ± 0.20 − 49.82 ± 0.03
Rt 48.76 ± 0.14 47.24 ± 0.20 50.17 ± 0.03 −
Ea 50.69 ± 0.29 49.29 ± 0.28 52.33 ± 0.03 52.11 ± 0.04
Eall 49.46 ± 0.25 48.04 ± 0.25 50.78 ± 0.05 50.59 ± 0.05
Eaw 51.64 ± 0.32 50.32 ± 0.24 53.08 ± 0.05 52.99 ± 0.04
Eb 49.56 ± 0.12 47.87 ± 0.20 50.93 ± 0.04 50.69 ± 0.03

Ea Eall Eaw Eb Average
H1 49.30 ± 0.29 50.54 ± 0.25 48.35 ± 0.32 50.43 ± 0.12 49.88 ± 0.14
H2 50.70 ± 0.28 51.95 ± 0.25 49.67 ± 0.24 52.12 ± 0.20 51.46 ± 0.09
Re 47.66 ± 0.03 49.22 ± 0.05 46.91 ± 0.05 49.06 ± 0.05 48.26 ± 0.02
Rt 47.88 ± 0.04 49.40 ± 0.05 47.00 ± 0.04 49.30 ± 0.03 48.44 ± 0.02
Ea − 51.50 ± 0.06 49.06 ± 0.07 51.43 ± 0.07 50.76 ± 0.05
Eall 48.49 ± 0.06 − 47.70 ± 0.09 49.85 ± 0.08 49.16 ± 0.06
Eaw 50.93 ± 0.07 52.29 ± 0.09 − 52.27 ± 0.03 51.74 ± 0.04
Eb 48.56 ± 0.06 50.14 ± 0.08 47.72 ± 0.03 − 49.24 ± 0.04
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4.2 Analysis of Eaw Learning

In Fig. 4.2 we visualized the relation between the performance of the best individuals
against generation-best individuals during the sample Eaw run, which allows seeing
the processes of ”learning” and ”forgetting”. It shows how the top five individuals
per 200 generations (top individuals in generation 0 are actually just random ones)
play against top five individuals of each of the generations on all training drafts.

As we can observe, champions from higher generations tend to perform better
on average, which is consistent with the previous observations. The initial scores
of every champion are high because they play against the early generations which
did not have time to learn. As the learning progresses, and the individuals from the
following generations are getting stronger, the scores of the champions tend to be
lowering.

It is worth to notice that the best genotypes of each generation were chosen
based on the current generation draft, but the chart shows their performance on all
1000 dt drafts. Thus, when we treat champions as constant opponents that differ in
strength, we can observe changes in the overall score after learning each new training
draft. Each descent means that it improves overall top individual performance, while
each rise signals that the overall performance (although one particular draft was
examined) decreased. As we can see in many places, the peaks and valleys are in
similar positions for multiple champion lines.
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Figure 4.1: Process of evolution for all algorithm variants. Computation budget
(correlated with the generation) on x-axis, average performance versus H1, H2 and
three random strategies on y-axis.
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4.3 Investigating Active-genes Approach

Introduction of active genes is correlated with the number of training drafts used
to evaluate a single population. More drafts imply a larger part of the genotype is
used within the operators. On the other hand, with limited drafts per generation,
the quality of the evaluation is limited, and some conclusions may be more easily
overwritten during the course of the evolution.

Thus, we introduced two additional variants of Eaw algorithm: using increased
drafts per generation, and learning on the same draft sequences more than one.
The first one, called Eaw/Kd where K is the number of active drafts, affects only
parent tournament and merge phases, in both places adding a loop over drafts. To
keep the number of training drafts and the computational cost the same, this variant
runs for g

K generations (comparing to Eaw).

The second variant called Eaw/Kg where K is the number of repetitions, bases
on duplicating part of drafts, leaving the evolution framework as-is. To ensure
comparable computation cost, as the variant runs for K×g generations, the number
of games in each generation is lowered accordingly.

Analyzing the results from Fig. 4.1, the average performance of Eaw/4g is
definitely the lowest. Clearly, the budget allowed a too low number of evaluations
to make one-generation learning enough reliable. However less restricted variant
Eaw/2g, although not the top one, performs reasonably well, without problems
achieving higher performance than our Eb baseline evolution.

There is no significant difference between Eaw/2d and Eaw/4d, both showing
similar results and only slightly worse than two leading algorithms Eaw and Ea.
When we compare the difference between those approaches in terms of percent of
the genome that is active, we have that for Eaw it is ∼56%, for Eaw/2d it is ∼79%,
and for Eaw/4d it is ∼95%. Which suggests, that the evolution based on active genes
performs better when the number of such genes is lower. (This is a similar tendency,
as the dropout regularization technique in the artificial neural networks.) In the
LOCM scenario, this number depends on the generation method used to prepare
drafts.

Additionally, we performed two more experiments concerning the trade-off
between the number of generations and a number of plays during the evaluation.
Both yielded similar but noisier results. Thus, they are not included in the work.
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Chapter 5

Conclusion

This work presents initial research towards handling the task of deckbuilding in
arena mode for Strategy Card Games. This task can be seen as a meta-problem
for the standard SCG deckbuilding, where the set of available cards is known in
advance. As the domain is characterized by a large state space and omnipresent non-
determinism, a straightforward approach to learn draft strategies via an evolutionary
algorithm is not very successful.

Instead, we propose a variant that learns gradually, generation-to-generation,
based only on the partial training data, but applies genetic operators selectively
only on some subsets of genes, and perform merge operation between individuals
from the previous population and offspring instead of standard selection to a new
population.

We have tested a few versions of this algorithm schema, and observe that usually
they perform better than the baseline, and some of them achieve average results
that are even significantly better. It is important to notice, that in such a random
environment as SCGs, it is unlikely to find a very dominant strategy. Thus even a
small increase in win percentage is an important gain that leads to overall success
in a timeline of hundreds of games.

What is also important, most of the presented approaches learns very fast in
terms of our cost measure (which is the number of required game simulations).
Given a fast simulation engine available on the Strategy Card Game AI Competition
package [23], it requires about half a minute to achieve a decent performance on an
average run.
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