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Problem statement

Collectible Card Games (CCGs) are two-player, turn-based, multi-action games
with imperfect information and randomness. (There are, of course, exceptions.)

For all of these reasons, it is infeasible to exhaustively explore the state tree, even
for one’s own turn – let alone the opponent’s.

Therefore, while creating an agent, it is common to rely on all kinds of heuristic
functions that limit the search space. Most commonly it is a hand-crafted state
evaluation, a linear combination of game-specific features, or a neural network.
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Test bed

As most human-playable CCGs are extremely
complex, we have decided to use Legends of Code
and Magic1 (LoCM) as our test bed. It is a CCG
designed for AI research – all cards’ effects are de-
terministic, and agents play in a fair arena mode.

1https://legendsofcodeandmagic.com

https://legendsofcodeandmagic.com


Idea

1. Compare representations of heuristic functions with different capabilities.

2. Measure how does the evolution target impact the result.

3. See whether bootstrapping a more capable model with a simpler one leads
to better results than both of them alone.

4. Evaluate the results in a real-world scenario – a tournament using agents
from the Strategy Card Game AI Competition.
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1. Representations comparison

We have implemented three representations:

• Linear – a linear combination of the features.

• BinaryTree – a binary tree with features and constants in leafs, and binary
operators in nodes (+, −, ∗, max , min).

• Tree – a generalization of BinaryTree to n-ary trees. The operators are
sum (

∑
), multiplication (

∏
), max , min, and a unary negation.

To ensure
that the operations are well-defined, all nodes have at least one subtree.
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1. Representations comparison

There are in total 20 game-specific features. First twelve refer to the global state
(six for each player): current mana, deck size, health, max mana, number of cards
to draw next turn, and next rune. The rest are card-specific: attack, defense, and
six flags for keywords (0.0 or 1.0).

Each representation implements two operations: evalState (based on global state
features) and evalCard (based on card features). Both tree-based representations
store two separate trees – one with global features and one with card features.

The final state evaluation is a sum of evalState and evalCard for each own
card on the board, minus evalState of the opponent, and evalCard for each of
opponent’s cards.
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2. Evolution target

Every evolution scheme evaluates individuals either by comparing how well they
deal with a specified task, without a normalized score, or by using an external,
predefined goal.

Both approaches have natural interpretations for CCGs – a win rate against each
other and a win rate against a fixed opponent respectively.

Once again, we have decided to test three approaches:

• progressive – using a standard in-population evaluation.

• weak-op – using a baseline agent of LoCM called Baseline2.

• strong-op – using one of the best evolved agents.
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3. Model bootstrapping

The tree-based models are more general but also harder to learn than a simple
linear combination. The ideal scenario would be to reach a limit of optimization
based on the linear representation, encode obtained solutions into the tree format,
and continue evolution using this stronger model.

We have done that by taking the evolved Linear agents and either continuing their
evolution (Linear-from-Linear) or transforming them into trees and continuing
the evolution as such (Tree-from-Linear).
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Results



Self-play win rate heatmaps. Each cell
represents how well the best individual of
generation on the y-axis plays against the
best individual of generation on the x-axis.

A light section on the bottom left, present
in all three progressive agents, proves
that as the evolution progresses, all indi-
viduals are increasingly better at self-play.
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Evolution progress of all the agents. Best individuals from a generation (x-axis) fought against the top
individuals of all own generations, yielding an average win rate (y-axis).
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Evolution progress of the *-from-Linear agents. Best individuals from a generation (x-axis) fought against the
top individuals of all own generations, yielding an average win rate (y-axis). The two bold lines average the thin,

semi-transparent lines that are the averaged results of agents with the same base.
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A subset of the tournament results. All scores (y-axis) stabilize as the number of rounds (x-axis) increases.



Thank you!


