
1

Proof Number Based Monte-Carlo Tree Search
Jakub Kowalski∗, Elliot Doe†, Mark H. M. Winands†,

Daniel Górski∗, Dennis J. N. J. Soemers†
∗Faculty of Mathematics and Computer Science, University of Wrocław

{jakub.kowalski, daniel.gorski}@cs.uni.wroc.pl
†Department of Advanced Computing Sciences, Maastricht University

e.doe@student.maastrichtuniversity.nl, {m.winands, dennis.soemers}@maastrichtuniversity.nl

Abstract—This paper proposes a new game-search algorithm,
PN-MCTS, which combines Monte-Carlo Tree Search (MCTS)
and Proof-Number Search (PNS). These two algorithms have
been successfully applied for decision making in a range of
domains. We define three areas where the additional knowledge
provided by the proof and disproof numbers gathered in MCTS
trees might be used: final move selection, solving subtrees, and
the UCB1 selection mechanism. We test all possible combinations
on different time settings, playing against vanilla UCT on several
games: Lines of Action (7×7 and 8×8 board sizes), MiniShogi,
Knightthrough, and Awari. Furthermore, we extend this new
algorithm to properly address games with draws, like Awari, by
adding an additional layer of PNS on top of the MCTS tree. The
experiments show that PN-MCTS is able to outperform MCTS
in all tested game domains, achieving win rates up to 96.2% for
Lines of Action.

Index Terms—Monte-Carlo Tree Search, Proof-Number
Search, MCTS Solver

I. INTRODUCTION

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
search method guided by the results of Monte-Carlo sim-
ulations, well established in game AI. Using the results of
previous simulations, the method gradually builds up a game
tree in memory and increasingly becomes better at accurately
estimating the values of the most promising moves. The
algorithm construction is very open for enhancements, which
resulted in classic enhancements [3] including MAST [4] and
RAVE [5], as well as some newer developments [6], with novel
contributions emerging each year [7].

MCTS has substantially advanced the state of the art in
several deterministic game domains [3], in particular Go [8],
but also other board games including Amazons [9], Hex [10],
Lines of Action [11], and the ones of the General Game
Playing (GGP) competition [12]. MCTS has even increased
the level of competitive agents in board games with chal-
lenging properties such as a larger number of players (e.g.,
Chinese Checkers [13]) or uncertainty (e.g., Kriegspiel [14]
and Scotland Yard [15]).

In tactical games, where the main line towards the win-
ning position is typically narrow with many non-progressing
alternatives, MCTS may often lead to an erroneous outcome
because the nodes’ values in the tree do not converge fast
enough to their game-theoretic value. To mitigate this effect,
MCTS variants have been proposed that integrate concepts of
minimax search [16]–[19].

Another promising direction would be the incorporation
of Proof-Number Search (PNS) [20] in MCTS. PNS and its
variants [21] have been proposed to prove endgames faster
than traditional minimax. PNS variants have been successfully
applied to a large number of domains including Chess [22],
Othello [23], Shogi [23], Lines of Action (LOA) [24], Go [25],
Checkers [26], Connect6 [27], and the multi-player game Rolit
[28]. So far, they have been incorporated in alpha-beta search
engines [29]. PNS was also combined with pure Monte-Carlo
simulations [30]. All PNS variants share two features: (1) they
are algorithms for solving binary goals, such as proving a win
or a loss for a game position, and (2) they rely on the concept
of proof and disproof numbers.

This paper proposes a new variant, called PN-MCTS,
which combines the strengths of MCTS and PNS with each
other. The main ideas are to incorporate proof and disproof
numbers in the UCB1 mechanism [2] of MCTS, and use
them for solving subtrees in a similar fashion as MCTS
Solver does [16]. To investigate PN-MCTS performance, we
performed game-playing experiments in five two-player, zero-
sum board games: Lines of Action (on two different board
sizes), MiniShogi, Knightthrough, and Awari, using a variety
of different time settings.

This paper is an extension of work originally presented in
[31] and contains significant improvements over the methods
described there. The paper adds a new PN-MCTS enhance-
ment that benefits from solving subtrees and includes extensive
tests checking all combinations of proposed enhancements.
New experiments cover a wider area of possible settings, and
they are computed based on four times more games per test,
which notably increases their confidence. We also propose a
novel extension of the originally proposed PN-MCTS algo-
rithm that is able to perform well in games with draws.

The remainder of the paper is organized as follows. First,
MCTS and PNS are discussed in Sections II and III, respec-
tively. Next, we propose a single-layer PN-MCTS in Section
IV. Subsequently, we empirically evaluate the proposed algo-
rithm in the following two sections. First, establishing proper
parameter values, and then conducting main experiments test-
ing all combinations of previously defined enhancements. In
Section VIII, we address the issue of games with draws,
proposing an extension of PN-MCTS that can handle them
successfully. Finally, Section IX gives conclusions and an
outlook on future research.

2

II. MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
search method that does not require a positional evaluation
function. It is based on a randomized exploration of the
search space. Using the results of previous explorations,
the algorithm gradually builds up a game tree in memory,
and increasingly becomes better at accurately estimating the
values of the most promising moves. MCTS consists of four
strategic steps, repeated as long as there is time left [32]. The
steps, outlined in Fig. 1, are as follows.

Repeated X times

Selection Expansion Play-out Backpropagation

A selection strategy is
used to traverse the tree

One or more nodes
are created

One simulated
game is played

The result is propagated
back in the tree

Fig. 1. Outline of Monte-Carlo Tree Search.

Selection Step. In the first step, a child is selected to
be searched based on previously gathered information. The
selection step controls the balance between exploitation and
exploration. On the one hand, the task consists of selecting
the move that leads to the best results so far (exploitation).
On the other hand, the less promising moves still have to be
tried, due to the uncertainty of the simulations (exploration).

Several selection strategies [3] have been suggested for
MCTS such as BAST, EXP3, UCB1-Tuned, but the most
popular one is based on the UCB1 algorithm [33]. A standard
MCTS implementation with UCB1 as selection strategy is
typically called UCT (Upper Confidence Bounds applied to
Trees) [2]. UCB1 works as follows. Let I be the set of nodes
immediately reachable from the current node p. The selection
strategy selects the child b of node p that satisfies Formula (1):

b ∈ argmaxi∈I

(
vi + C ×

√
lnnp
ni

)
, (1)

where vi is the estimated value of the node i, ni is the visit
count of i, and np is the visit count of p. C is a parameter
constant, which can be tuned experimentally (e.g., C =

√
2).

In the case of a tie, the tie is broken randomly. This process
is repeated until a node is reached that has not yet fully
been expanded.

Expansion Step. As previously stated, the selection step
continues until a node is reached that has not yet expanded all
of its children. Among the children that have not been stored
in the tree, one is selected uniformly at random. This node L is
then added as a new leaf node and is subsequently investigated.

Play-out Step. From the leaf node the play-out step is
performed. Moves are selected in self-play until the end of
the game is reached. This step might consist of playing plain
random moves or—often better—semi-random moves chosen
according to a simulation strategy.

Backpropagation Step. In the final step, the result R of a
play-out k is backpropagated from the leaf node L, through
the previously traversed nodes, all the way up to the root.
Alongside, the visit counter for the visited nodes is increased.
The result is scored positively (Rk = +1) if the game is won,
and negatively (Rk = −1) if the game is lost. Draws lead to
a result Rk = 0. A backpropagation strategy is applied to
the value vi of a node i. Here, it is computed by taking the
average of the results of all simulated games made through
this node [1], i.e., vi = (

∑
k∈K Rk)/ni, where K is the set

of indices for all play-outs.

There are two common ways to select a move to
play after the time for MCTS computations run out. One
(used in this paper’s experiments) is to select a move leading
to the root child node with the most visits, and the other is to
prioritize the node with the best value (average score) [32].

III. PROOF-NUMBER SEARCH

Proof-Number Search (PNS) is a best-first search method
especially suited for finding the game-theoretic value in game
trees [20]. Its aim is to prove a particular goal. In the context
of this paper, the goal is to prove a forced win for the player to
move. A tree can have three values: true, false, or unknown. In
the case of a forced win, the tree is proven and its value is true.
In the case of a forced loss or draw, the tree is disproven and its
value is false. Otherwise, the value of the tree is unknown. As
long as the value of the root is unknown, the most-promising
node is expanded. Just like MCTS, PNS does not need a
domain-dependent heuristic evaluation function to determine
the most-promising node [20]. In PNS, this node is usually
called the most-proving node. PNS selects the most-proving
node using two criteria: (1) the shape of the search tree (the
branching factor of every internal node) and (2) the values of
the leaves. These two criteria enable PNS to treat game trees
with a non-uniform branching factor efficiently.

Below we explain PNS based on the AND/OR tree depicted
in Fig. 2, in which a square denotes an OR node, and a circle
denotes an AND node. The numbers to the right of a node
denote the proof number (upper) and disproof number (lower).
A proof number (pn) represents the minimum number of leaf
nodes, which have to be proven in order to prove the node.
Analogously, a disproof number (dpn) represents the minimum
number of leaf nodes that have to be disproven in order to
disprove the node. Because the goal of the search is to prove
a forced win, winning nodes are regarded as proven. Therefore,
they have pn = 0 and dpn = ∞ (e.g., node i). Lost or drawn
nodes are regarded as disproven (e.g., nodes f and k). They
have pn = ∞ and dpn = 0. Unknown leaf nodes have pn =
1 and dpn = 1 (e.g., nodes g, h, j, and l). The pn of an
internal OR node is equal to the minimum of its children’s

3

1
a

b c

ih lk

ed gf

2

1

2
0

0

0
0

0

1

1

1

1

1

2

1

1

draw ??

loss ?

j

?

1

1

win

Fig. 2. An AND/OR tree with proof and disproof numbers

proof numbers, since to prove an OR node it suffices to prove
one child. The dpn of an internal OR node is equal to the
sum of its children’s disproof numbers, since to disprove an
OR node all the children have to be disproven. The pn of an
internal AND node is equal to the sum of its children’s proof
numbers, since to prove an AND node all the children have to
be proven. The dpn of an AND node is equal to the minimum
of its children’s disproof numbers, since to disprove an AND
node it suffices to disprove one child.

The procedure of selecting the most-proving node to expand
next is as follows. The algorithm starts at the root. Then, at
each OR node the child with the smallest pn is selected as
successor, and at each AND node the child with the smallest
dpn is selected as successor. Finally, when a leaf node is
reached, it is expanded (which makes the leaf node an internal
node) and the newborn children are evaluated. This is called
immediate evaluation. The selection of the most-proving node
(j) in Fig. 2 is given by the bold path.

IV. PN-MCTS ALGORITHM

To determine a feasible approach to incorporating (dis)proof
numbers into MCTS, it is first important to consider what
information the proof and disproof numbers bring. As ex-
plained in the previous section about PNS, a (dis)proof number
provides a lower bound for the number of nodes that still have
to be (dis)proven to prove the current node.

In PNS, these lower bounds determine which leaf node
would be investigated further. In MCTS, the selection step
has a similar function. In the default MCTS implementation,
this would use the UCB1 Formula (1). Thus, a natural way
to combine MCTS and PNS would be to combine these two
ways of selecting promising leaf nodes and modify the basic
UCB1 formula with knowledge gained from PNS.

A direct consequence of tracking this lower bound is
knowledge about the proven/disproven subtrees. Although for
any game of proper size we should not expect the game root
to be proven, it may be possible that near the endgame, the
current state became provable. Also, many subtrees can be
(dis)proven within the MCTS tree during a search, so there is
no need to revisit them again during the expansion phase.

Therefore, we introduce three PNS-based types of MCTS
enhancements, regarding Final move selection, Solving sub-
trees, and UCB1 formula. They can be applied independently,
in the form of boolean flags (each enhancement turned on/off).

A. Final Move Selection

This is a simple yet effective enhancement. Due to the
proof numbers stored in nodes, we know which of the subtrees
rooted in these nodes are proven to win for our player. Thus,
if during the final move selection there is a move leading to
a proven child, we should always select it regardless of the
number of visits / average score in this node.

We may be tempted to use disproof numbers in a similar
way, forbidding the selection of such nodes if any alternative
exists, but please note that if the game has more than two
outcomes, all proven outcomes other than a win will count as
disproven. E.g., we will not distinguish a node that is a loss
from one that leads to a draw. We present a solution to this
issue in Section VIII.

B. Solving Subtrees

Proof and disproof numbers can be seen as an extension of
a solver [16], [34], a successful MCTS enhancement that is
obligatory in most applications. MCTS-Solver backpropagates
information from leaf nodes being terminal states and marks
subtrees as won, lost, or unresolved. PN-MCTS computes a
superset of this information, so it can be used in the same
way—to save the computational effort and skip revisiting
already (dis)proven subtrees.

In practical applications of MCTS-Solver, usually an addi-
tional parameter T is introduced to deal with bias favoring
narrow paths to win during the selection step when some
children of a node are solved. Thus, a node is omitted
during the UCT selection only if the number of visits in this
node exceeds the threshold T [16]. In the case of all our
experiments, if the solver enhancement is on, T is equal to 5.

C. UCT-PN

The third enhancement proposed in this paper is a modifica-
tion of basic UCB1. By adjusting UCB1 to also use proof and
disproof numbers, the information from the (dis)proof number
can influence the decision making process, with no need to
change anything else about MCTS.

The final consideration then is how to use (dis)proof
numbers in UCB1. The magnitudes of differences amongst
(dis)proof numbers technically do not have much meaning.
For example, a node with a proof number of 100 is not
necessarily ten times worse than a node with a proof number
of 10. The node with the proof number of 100 may just
have been investigated more often already. The fact that the
magnitudes of differences between (dis)proof numbers do not
have much meaning makes it difficult to directly use them in
the UCB1 formula.

Instead of using the proof or disproof numbers directly in
the formula, this paper proposes that the (dis)proof numbers
are used to determine a ranking amongst all the nodes. The

4

ranking is similar to the one of PNS as explained in Section III.
At an OR node the child node with the lowest proof number
would get the best ranking because that is the node that would
be selected in regular PNS. For example, if there are 30 child
nodes, the one that would be picked according to PNS gets a
rank of 1. At an AND-node, the node with the lowest disproof
number is picked. The next best ranking node would be the
node PNS would pick if the original best ranking node was
not an option (so the second lowest (dis)proof number would
get a ranking of 2, whereas the worst option would get 30 for
this example). Ties are awarded the same rank. Finally, this
rank can then be normalized to be in the range of [0, 1].

Normalization allows the resulting value to be in a range that
is similar to the values that might come out of the exploitation
or exploration parts of the UCB1 formula, in a manner that
is also automatically adaptive to differences in the number
of legal actions between different states. Our adjusted UCB1
formula, referred to as the UCT-PN formula looks as follows:

b ∈ argmaxi∈I

vi + C

√
lnnp

ni

+ Cpn

(
1 −

pnRanki

maxj∈I (pnRankj)

). (2)

To normalize, the rank of a specific node pnRank is
divided by the largest rank value of any of the children.
The lowest rank means best node according to PNS, so
maxj∈I(pnRankj) is the highest (and thus worst) rank of
any child node. To control the influence of the addition, the
PN-Parameter Cpn is added. The rest of the variables are the
same as in the regular UCB1 Formula (1). This paper uses
the term PN-MCTS to refer to any MCTS variant that uses
the UCT-PN formula instead of the base UCB1 formula for
its selection step.

V. ENVIRONMENT

Here, we briefly introduce the domains used to test our
algorithm. We outline the general game-playing system Ludii,
in which all algorithms and games were implemented, and
explain the choice for this system. Then, we present the rules
of the five games used as a test domain to compare our PN-
MCTS with the basic MCTS.

A. Ludii General Game System

The Ludii General Game System [35] is a general game-
playing framework, which provides an environment for de-
velopers to test their implementation of general game-playing
agents. Its advantage over the other similar systems ([36],
[37]) comes from including over 1,000 games described in
its game description language, and implementations of vari-
ous standard algorithms and enhancements (such as several
variants of MCTS). It has a single, unified API for the
development of intelligent agents, based on a forward model
(with functions to generate lists of legal actions, generate
successor states, and so on) and standardized state and action
representations. Ludii has been demonstrated [35] to process
games faster than the previous state-of-the-art general game-
playing framework based on Stanford’s Game Description
Language [38], which is important for the playing strength
of game-search algorithms such as MCTS.

B. Game Domains
Two-player adversarial games are well suited to PNS as it

structures its knowledge as AND/OR-trees. The list of games
that fulfill this condition is still rather large. To narrow the
list down even more, only domains in which both MCTS and
PNS have shown to be effective are considered. If either MCTS
or PNS does not perform well in a domain, the combination
of the two will probably not be very effective. From the
remaining list of games that fits the requirements and desirable
qualities, four games are chosen: Lines of Action, Awari,
MiniShogi, and Knightthrough. Each of the games is briefly
described below.

1) Lines of Action: The rules of Lines of Action (LOA) are
as follows [39]. It is played on an 8×8 board by two sides,
Black and White. Each side has twelve pieces at its disposal.
The black pieces are placed along the top and bottom rows of
the board, while the white pieces are placed in the left- and
right-most files of the board. The players alternately move a
piece, starting with Black. A piece moves in a straight line,
exactly as many squares as there are pieces of either color
anywhere along the line of movement. A player may jump
over its own pieces, but not the opponent’s, although opposing
pieces are captured by landing on them. The goal of the players
is to be the first to create a configuration on the board in
which all their pieces are connected in a single group (with
each piece being directly adjacent to at least one of the other
pieces). Adjacencies may be orthogonal or diagonal.

There are two main reasons why LOA was chosen as the
main test domain. Both MCTS and PNS have been extensively
tested on LOA [11], [21], and the game board has an adjustable
size. The default board is 8×8, but smaller sizes such as 7×7
can also be used. The advantage of the smaller board sizes
is that the game reaches endgame states much quicker. PNS
works best in endgame scenarios where game states can be
proven or disproven in fewer steps. Thus, by testing on various
board sizes, the experiments can test whether PN-MCTS has
a better performance when endgame states require fewer steps
to be reached.

2) Awari: Awari is a Mancala or sowing game [40]. It is
is played on a 2×6 board and with counters. The goal of the
game is to capture as many counters as possible. To capture
counters, a player must end their sow in the opponent’s row
and in a hole with 2 or 3 counters (including the piece used
to sow). Sowing is a process where a player takes all the
counters from a hole in their row and deposits them one by
one into adjacent holes until none are left. In Awari, sowing
goes counter-clockwise. The game is over once none of the
holes contain more than 1 counter. The player who captured
most counters wins, or in case both players have an equal
amount, the game ends in a draw. Awari is a suitable test
domain for PN-MCTS as Mancala variants have been used as
testbed for PNS [20] and MCTS [18] in the past.

3) MiniShogi: MiniShogi is a variant of the old Japanese
game called Shogi and was invented around 1970 by
Shigenobu Kusumoto. The game has various pieces each of
which have their own rules for movement. The goal is to
capture the opponent’s King with these pieces. Pieces can be
promoted by moving them towards the opponent’s side of the

5

board. Opponent pieces can be captured by moving a piece
onto an enemy piece. Instead of moving a piece, players may
also spend their turn by placing a piece they have previously
captured as a new piece of their own on the board. MiniShogi
differs from regular Shogi in the following ways: it is played
on a 5×5 board, it has fewer pieces than the original, and
features a smaller promotion area. Shogi endgames have been
one of the main test domains of PNS [41], whereas MCTS has
become the dominating search technique for this game [42].

4) Knightthrough: The game of Knightthrough is a variant
of Breakthrough [43]. It is played on an 8×8 board. Each
player has 16 pieces in the first two rows of their side of
the board (opposing sides). Every piece moves like a knight
in chess. This means each piece may move 1 square in one
non-diagonal direction and then 2 squares in a perpendicular
direction. Pieces may be captured by landing on them. Knights
can jump over other pieces (both friendly and opponent). The
goal of the game is to reach the opponent’s edge of the board
(the row furthest from the player) with one of their knights.
A player can also win by capturing all opposing pieces.
Knightthrough has been used to test MCTS in a general-
game-playing context [44]. Its original variant Breakthrough
has served as a test bed for PNS variants [45].

VI. EXPERIMENTS

This section outlines the experiments that have been con-
ducted for the initial parameter tuning and measurement of
computational efficiency difference between the compared
algorithms.

The variant of PN-MCTS with final move selection and
UCT-PN formula (solver enhancement is disabled) is tested
against a basic UCT implementation from the Ludii system.1

The PN-MCTS extension has been built on the same code
base. For both agents the MCTS C parameter is set to

√
2.

For every result, if the error margins are presented, they
mean a 95% confidence interval. When calculating winrates,
we count draws as 0.5 wins. Also, player positions are
swapped in all tests so that the agents play both sides
equally often.

All of the experiments described in this paper have been
run on an Intel(R) Core(TM) i7I7-11700K CPU with 2×
16GB RAM. The repository containing the source code of
the algorithms presented in this work and exact encodings of
the games used is available on GitHub.2

A. PN-Parameter

First, we want to tune the Cpn parameter. Values of
Cpn ∈ {0.0, 0.1, 0.5, 1.0, 2.0, 5.0, 106} are tested, each with
1000 games against the base MCTS. One of the tested
Cpn configurations is set to an arbitrarily high number 106.
Then, the PN-MCTS performs semantically the same as a
regular PNS (with the additional overhead of Monte-Carlo
simulations), except that ties in proof and disproof numbers
are broken by UCB1 instead of randomly. The experiments

1https://github.com/Ludeme/LudiiExampleAI
2https://github.com/acatai/pn-mcts

Fig. 3. Tuning the Cpn parameter. PN-MCTS against MCTS for 7×7 and
8×8 LOA (1000 games, 1s per turn).

are executed with 1 second per turn. This experiment is
conducted in the game of LOA on the board sizes 7×7 and
8×8. By playing on two board sizes, results can be compared
to determine if larger search spaces, longer games, and later
endgame situations have different trends in which parameters
are best for the PN-MCTS.

Figure 3 displays the win rates of PN-MCTS with varying
Cpn against MCTS. The trend in the win rate of PN-MCTS
is fairly similar for both board sizes. If Cpn nears 0, such
as when it is 0.1, the PN-MCTS will behave more like the
basic MCTS with final move selection (so it makes up for
decreased efficiency). Another low point for both board sizes
is when Cpn is 106. When Cpn is that high, the agent starts
behaving similarly to PNS. From the results, it seems that
a basic PNS still performs better than basic MCTS on the
smaller 7×7 board, but not on the regular 8×8 board. This
is expected as PNS is most effective in the endgame. Due to
the endgame being reached sooner on the 7×7 board, endgame
states—in which PNS and MCTS-PNS with high Cpn are more
effective—constitute a greater proportion of the game tree.

As for the highest win rates, on a 7×7 board, a Cpn of
2.0 performs best, recording a win rate of 91.2% over basic
MCTS. On the 8×8 board, a Cpn of 1.0 appears to be the
optimal one, with a win rate of 83.2%.

Cpn represents the impact that the (dis)proof numbers have
on the basic MCTS. So on the smaller board size, where PNS
performs better than MCTS, a larger influence of the proof
and disproof number performs better. This is only true to some
degree, as when Cpn reaches 5.0, the win rate drops as it starts
to converge toward the score of a pure PNS.

To give an idea how a pure PNS would behave on its own
without any CPU overhead, we conducted an experiment with
Cpn = 106 and a fixed number of 1000 simulations per
move in LOA 8×8. Here PN-MCTS won only 9 out 100
games against the regular MCTS. For the same number of
simulations, but for Cpn = 1, PN-MCTS won 99 out 100
games. These results validate that PNS on its own is weaker
than MCTS, but when combined together in PN-MCTS the
algorithm may outperform MCTS.

https://github.com/Ludeme/LudiiExampleAI
https://github.com/acatai/pn-mcts

6

B. Overhead Estimation

This experiment investigates the cost of obtaining, and
continuously updating, the proof and disproof numbers. PN-
MCTS is constructed as an augmentation of the basic MCTS
implementation provided by the Ludii system to ensure that
any difference in performance is solely due to the implemen-
tation of the proposed enhancement. The (dis)proof numbers
have to be recalculated on backpropagation; thus, in general,
the larger the tree, the higher the backpropagation has to go
and the higher the processing cost should be.

To obtain the cost specifically, we count and compare
the number of simulations performed by PN-MCTS and the
original MCTS. For each of the five tested games, we played
1000 matches with 1-second turn limit, summing the number
of simulations performed during the first half of the match. We
applied this methodology to remove noise created by the end-
game search, usually consisting of a huge number of iterations
with zero-depth playouts. We take the average number of
simulations per match per algorithm and obtain a ratio dividing
the number of PN-MCTS simulations by MCTS simulations.
Thus, the smaller the number, the slower our implementation
of PN-MCTS in this game compared to the basic MCTS. The
results of the overhead experiment are presented in Table I.

The table reveals that PN-MCTS has a relatively mild
overhead for three out of five tested games, where ratios
are no lower than 0.9. For Knighthrough and MiniShogi the
drop is more significant. For these games, efficiency is a
disadvantage that would need to be overcome by the quality
of the PN enhancement.

There is one difference in our PN-MCTS implementation
compared to basic MCTS that can have an influence here. PN-
MCTS fully expands all children of nodes at once—allowing
for the computation of (dis)proof numbers and rankings for all
children—whereas the standard MCTS only expands one child
per simulation. This increases memory usage for PN-MCTS
and hinders its performance for games with large branching
factor and a relatively high baseline number of simulations per
second (e.g., Knightthrough).

The extreme case encountered during our research was
related to Gomoku [46]. It is a connection game, played on a
15×15 board, with black and white stones. The goal is to make
a row of exactly five stones of the same color. As PNS has been
applied in Gomoku before [47], and MCTS variants have also
been developed for this game [48], we included it in our initial
experiments. However, as the game has quite a large branching
factor (initially 225) and a simple (thus fast) move application,
we obtained an overhead ratio of 0.054, so our implementation
was shown to be nearly 20 times slower. For this reason, we
do not include the remaining results concerning Gomoku.

It is important to note that this particular behavior is not
required by the PN-MCTS enhancement itself. We plan to
improve our implementation in this regard in future work.

TABLE I
PN-MCTS OVERHEAD OVER MCTS, BASED ON THE AVERAGE NUMBER
OF SIMULATIONS PERFORMED PER GAME (1000 GAMES, 1S PER TURN)

Game PN-MCTS sims MCTS sims PN-MCTS/MCTS ratio

LOA 7×7 8401.306 8811.572 0.953
LOA 8×8 16804.794 18549.838 0.901
MiniShogi 573.641 774.442 0.741
Knightthrough 15376.921 19919.245 0.772
Awari 30395.64 31722.801 0.959

VII. PN-MCTS EXPERIMENTS

In this section, we present two groups of experiments. The
goal of the first one is to measure the influence of each
enhancement of PN-MCTS on the overall result. Thus, we test
all combinations of these enhancements using a time limit of
1 second per turn. The second experiment aims to show the
trends of the algorithm given different time limits. For this test,
we chose the most successful variants of PN-MCTS based on
the previous experiment.

We played 1000 games for each test (with 500 games per
side), and Cpn = 1. To encode which PN-MCTS enhancement
is turned on, we use the following notation. Final move selec-
tion is encoded by F, Solver by S, and UCT-PN formula by U.
If an enhancement is off, the x symbol is used instead. Thus,
xSx encodes a variant where only PN-solver is used, while
FSU is a variant with all proposed enhancements enabled.

A. PN-MCTS Variants

The results of the experiment are presented in Table II. To
make the comparison meaningful, in the xxx variant, none of
the enhancements are used, but all data required to use them is
computed. Thus, this is the baseline, in which the winrates are
strictly correlated with the results of the overhead experiment.

There are two main observations. First is that the behavior
of the PN-based enhancements is rather game dependent, and
as it may be quite beneficial for some games, it may also
be quite harmful for others. Second is that, indeed, proposed
enhancements are mostly improvements, and turning them on
increases the winrates. It is not always the case, but the FSU
variant with all enhancements is the best combination in 3 out
of 5 tested domains and second-best in one more.

1) Final Move Selection: Although the benefits of this
enhancement are apparent, and it has always been a crucial part
of MCTS-Solver [16], its impact was never measured alone,
apart from the selection part of the solver. Our experiments
measure this impact, as we can directly compare combinations
of enhancements with, and without final move selection: xxx
and Fxx, xSx and FSx, xxU and FxU, finally xSU and FSU.

There are a few interesting observations here. The first is
that there are three cases where this enhancement lowers the
winrate, all of which are for LOA. While these reductions
are by statistically significant margins according to one-sided
tests with 95% confidence levels, the effect sizes are relatively
small (the worst case is a drop of 3.8 percentage points, from
49.8% to 46.0%). The effect is also not necessarily consistent,
in the sense that there are also other LOA cases with an effect
in the other direction.

7

TABLE II
COMPARISON OF PN-MCTS VARIANTS. GIVEN WINRATES ARE AGAINST A BASIC MCTS. (1000 GAMES, Cpn = 1, 1S PER TURN). ENHANCEMENTS

ENCODING – FINAL MOVE SELECTION: F, SOLVER: S, UCT-PN: U, NO ENHANCEMENT: X .

Game domain PN-MCTS variant
xxx Fxx xSx xxU FSx FxU xSU FSU

LOA 7× 7 49.8± 3.10 46.0± 3.09 61.0± 3.02 87.8± 2.02 65.6± 2.95 90.4± 1.83 91.1± 1.76 93.2 ± 1.56
LOA 8× 8 44.6± 3.08 45.2± 3.09 63.1± 2.99 86.2± 2.13 66.4± 2.93 83.2± 2.32 92.9 ± 1.59 90.8± 1.79
MiniShogi 31.3± 2.88 48.2± 3.10 40.9± 3.05 55.5± 3.08 53.2± 3.09 64.5± 2.97 60.3± 3.03 65.8 ± 2.94
Knightthrough 43.1± 3.07 52.3± 3.10 55.9± 3.08 51.6± 3.10 59.2± 3.05 56.4± 3.08 63.5± 2.99 66.8 ± 2.92
Awari 34.2± 2.74 34.4± 2.77 35.2± 2.86 48.2± 2.69 38.0± 2.94 49.8 ± 2.72 40.0± 3.01 40.6± 3.01

In all other cases, selecting a proven move gives an addi-
tional few percent points. Usually, the simpler the algorithm
(more enhancements are off), the larger the impact of the en-
hancement. In some cases, for MiniShogi and Knightthrough,
the benefits may reach 10%. Lastly, the enhancement does
not benefit so much drawish games as Awari, as it does not
influence the decision of when to draw instead of possibly
losing (improvements up to 3%). We come back to this topic
in the next section.

2) Solving Subtrees: This enhancement is usually bene-
ficial, and quite impactful, providing improvements ranging
from about 3 percent points with all other enhancements, to
nearly 20 percentage points for LOA and simpler variants
of the algorithm, e.g., Fxx to FSx. For MiniShogi and
Knighthrough, it is also a clear improvement, reaching up to
10 additional percent points winrate.

However, for Awari, solver tends to be harmful. The highest
negative impact observed, over −9% is for the most complex
variant, between FxU to FSU. Again, the reason here is the
high frequency of draws in the game. Most likely, the impact
of excluding of some child nodes from contributing to the
UCB1 selection formula.

3) UCT-PN: For all the tested games and relevant variant
pairs, extending the UCB1 formula with UCT-PN proves to be
beneficial. All overall best results for each game contain this
enhancement. In 14 out of 20 comparable variants, winrates
increased by more than 10%. The biggest observed improve-
ment, 44.4%, is for LOA 7× 7, from Fxx to FxU.

On the one hand, such results should be expected, as the test
set contains games where PNS has proven to be effective. On
the other hand, it is not necessarily true that combining two
valid approaches will result in an even better one. Also, the
ranking system UCT-PN introduces, requires sorting nodes,
which is the potentially costly part of the proposed extension.

Overall, PN-MCTS wins in 4 out of 5 tested games against
the standard UCT-MCTS, with a clear over 90% winrate for
LOA, and a tie for Awari.

B. Time Trends

To assess the usefulness of the proposed MCTS variant it is
necessary to measure the effect of time and estimate the trends.
We have selected all variants with at least two enhancements
applied (FxU, FSx, FSU, xSU), and run them for different
time limits: 0.125, 0.25, 0.5, 1, 2 and 4 seconds per move.
The results of this experiment are presented in Figure 4.

The more computation time both algorithms have, the
greater impact of the difference in efficiency, and relatively

pure MCTS makes many more simulations. However, the PN
component of the PN-MCTS has the most impact in endgame
positions, so with more time, there is a higher chance of
reaching them sooner. The trends depend on the balance of
each of these factors for each of the tested domains.

For LOA, independently of the board size, there is gen-
erally an improving tendency for variants with the UCT-PN
enhancement, and worsening for FSx. The peak winrate with
96.2% is reached by FSU for the larger LOA board and the
2 seconds time limit. For MiniShogi variants with final move
selection perform roughly stable for all times, while xSU has
poor results for low time limits, and becomes comparable to
other variants with ≥ 1s. The trends for Knightthrough are
harder to generalize, with FSx and FSU behaving in U-like
shape, and FxU being clearly worse, staying below 60% for
all times. The general behavior for Awari is that with more
time, the results of PN-MCTS are worse for all variants tested.

VIII. DOUBLE-LAYER PN-MCTS
As already mentioned, PN-MCTS in the form presented

above does not properly handle games with draws: proven
nodes are won nodes, but disproven nodes can be drawn or
lost. However, we have a solution for this issue.

Instead of remembering just a proof and disproof number
for each MCTS tree node, we remember two additional values:
second-layer proof number and second-layer disproof number.
These data are processed exactly as the first-layer (dis)proof
numbers described before, with one important difference: now
the semantic of our proof is “not lost”. The resulting game-
theoretic values of each (dis)proof number are presented in
Table III.

We found our concept somewhat similar to the one in
[49]. However, as our PNS application is an online search,
rather than an offline solver, and the proposed solution is
determined by the choice of the UCT-PN formula, some of
the optimization from their publication cannot be used.

TABLE III
GAME-THEORETIC VALUES FOR DOUBLE-LAYER PN-MCTS

Proven nodes Disproven nodes
First layer Won Drawn, Lost

Second layer Won, Drawn Lost

A. Second-Layer Enhancements
We have to decide how each of the previously proposed

enhancements can benefit from the additional PN layer. The

8

Fig. 4. Comparison of the best PN-MCTS variants in different time settings, playing against a basic MCTS (1000 games, Cpn = 1).

simplest case is for the solver part. The only difference is that
instead of marking as resolved nodes that are proven on the
first layer, we skip them if they are proven on the second
layer, as it is easier to prove the superset. The remaining
improvements are described in their respective sections and
accompanied by the experiments testing their effectiveness.

All the experiments regarding double-layer PN-MCTS are
performed on Awari, as it is the only game from our test
domain with a significant number of draws.

B. UCT-PN Rank Sorting
For the UCT-PN part, there are multiple methods to leverage

this new knowledge. One that seems straightforward is to
enhance Formula (2), and introduce a new parameter Cpn2

that will rank nodes and influence the equation independently
of the first layer. There are two downsides to this approach.
One is that it introduces a new parameter that requires
additional tuning. Second, in our opinion worse, is that it
requires separate sorting of nodes to compute ranks. This
will heavily influence the computational efficiency, which is
already a problem.

Thus, our proposed solution is to modify the sorting mecha-
nism, and use second-layer (dis) proof numbers as a tiebreaker.
To ensure that this idea works, we took all variants that use
UCT-PN formula and compare them with the corresponding
results of the single-layer PN-MCTS from Table II. All
variants with the final move selection use algorithm described
before, taking into account only first-layer proven nodes. The
results of this experiment are presented in Table IV.

As we can see, the results are strictly better on the variants
where this new sorting method is paired with a solver. In the

TABLE IV
INFLUENCE OF INTRODUCING SECOND LAYER TIE-BREAKER IN THE
UCT-PN FORMULA. SINGLE-LAYER/DOUBLE-LAYER PN-MCTS

AGAINST A BASIC MCTS (AWARI, 1000 GAMES, Cpn = 1, 1S PER TURN).

Variant UCT-PN formula
Single-layer Double-layer

xxU 48.2± 2.69 48.4± 2.77
xSU 40.0± 3.01 47.1± 2.85
FxU 49.8± 2.72 48.6± 2.70
FSU 40.6± 3.01 46.4± 2.83

remaining cases, the confidence bounds of both algorithms’
winrates are overlapping, so they are tied. Thus, although the
proposed second-layer UCT-PN is not a general improvement,
it does not seem to be harmful, and it may lead to better results
for some variants.

C. Final Move Selection Contempt Factor

Additional knowledge provided by second-layer proof num-
bers allows us to choose a move that leads to a proven draw if
one is available. However, it is not a straightforward decision
when to do so, as by choosing such a move, we usually give
up any chances to win a game.

Thus, the so-called Contempt Factor is used to determine
when to prefer draw over the other lines of play. In our case,
if the root score is strictly smaller than a contempt factor, then
the proven draw child (if available) is selected.

To test the impact of this parameter, we chose two variants
which use final move selection (FxU, FSU), and extend the
selection by different values of contempt factor: <-1, -0.2, 0,

9

Fig. 5. Comparison of various contempt factor values for Double-Layer PN-
MCTS (Awari, 1000 games, Cpn = 1, 1s per turn).

0.2, 0.4, and 0.6. Note that the possible outcomes of the game
are -1, 0, and 1. Thus, the contempt factor less than -1 behaves
exactly as a single-layer PN-MCTS final move selection. The
results of this experiment are presented in Figure 5.

As we can see, the contempt factor has a non-negligible
impact on the algorithm’s performance. The right value, which
in the case of two of the tested variants would be around 0.0,
increases the scores by 3.6–6.3% compared to the standard
single-layer PN final move selection, allowing FxU a confident
win against the standard MCTS.

Thus, both presented improvements obtained by extending
PN-MCTS by another layer of Proof-Number Search seem
to positively impact the algorithm behavior—increasing its
winrate given the right conditions and parameter values.

IX. CONCLUSIONS AND FUTURE RESEARCH

This paper introduces PN-MCTS, a new Monte-Carlo Tree
Search enhancement that combines it with Proof-Number
Search. We proposed several variants of the algorithm by
taking advantage of the additional knowledge in three areas:
during the final move selection, during the MCTS selection
phase, and in the UCB1 formula. In particular, the ranking of
the nodes according to their (dis)proof numbers is used to bias
the UCB1 formula.

While there is a computational cost necessary to obtain
the proof and disproof numbers, for the right domain and
parameter values, the benefits can outweigh the costs. The
results show that for LOA, MiniShogi, and Knightthrough, one
can choose a variant of PN-MCTS that outperforms standard
UCT for all time settings tested, some of which reach a winrate
up to 96%. An interesting case is Awari, where many tested
variants are losing or drawing, but, especially for time limits
below 1 second per move, PN-MCTS can convincingly win.

Because PNS can only deal with binary outcomes, in the
basic PN-MCTS implementation, the disproof number is the
same for a draw and a loss, potentially steering the search
in the wrong direction. We aimed to resolve this issue by

introducing a second layer of proof numbers to distinguish
draws from losses. With this enhancement, double-layer PN-
MCTS was able to win against standard MCTS in Awari for
the same setting that was previously a tie.

There are multiple directions for future research. One is to
test PN-MCTS on more domains and to investigate the reason
why it does (not) work for certain games. Concurrently, one
could test more parameter values with different time settings,
and develop alternative methods of combining UCB1 formula
with PN values. Although the ranking idea worked best from
what we have tested so far, further studies on the subject
are required. Eventually, we could search for more elaborate
enhancements, taking advantage of the concept of multi-layer
PN-MCTS. In particular, extend the double-layer variant into
a multi-layer one, to handle games with multiple outcomes.
Alternatively, this concept can be adapted to handle games
with more than two players by computing proven subtrees
against each of them separately.

We also plan to extend our research to Product Propagation
[50]. Another approach to backup probabilistic information in
two-player game tree search, shown to outperform PNS on
some games [51]. Thus, it is a natural line of research to
test if and how our PNS-related developments will transfer to
Product Propagation.

X. ACKNOWLEDGMENTS

This research is partially funded by the European Research
Council as part of the Digital Ludeme Project (ERC Consol-
idator Grant #771292).

This research was also supported in part by the
National Science Centre, Poland, under project number
2021/41/B/ST6/03691 (Jakub Kowalski). For the purpose of
Open Access, the author has applied a CC-BY public copyright
licence to any Author Accepted Manuscript (AAM) version
arising from this submission.

REFERENCES

[1] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” in Computers and Games (CG 2006), ser. Lecture Notes
in Computer Science, vol. 4630, 2007, pp. 72–83.

[2] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,”
in Machine Learning: ECML 2006, ser. Lecture Notes in Artificial
Intelligence, vol. 4212, 2006, pp. 282–293.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[4] H. Finnsson and Y. Björnsson, “Simulation-based Approach to General
Game Playing.” in AAAI, vol. 8, 2008, pp. 259–264.

[5] S. Gelly and D. Silver, “Monte-Carlo Tree Search and Rapid Action
Value Estimation in Computer Go,” Artificial Intelligence, vol. 175,
no. 11, pp. 1856–1875, 2011.

[6] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte
Carlo Tree Search: A Review of Recent Modifications and Applications,”
Artificial Intelligence Review, vol. 56, no. 3, pp. 2497–2562, 2023.

[7] J. Kowalski, M. Mika, W. Pawlik, J. Sutowicz, M. Szykuła, and M. H. M.
Winands, “Split Moves for Monte-Carlo Tree Search,” AAAI Conference
on Artificial Intelligence, vol. 36, no. 9, pp. 10 247–10 255, 2022.

[8] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the Game of Go Without Human Knowledge,” Nature, vol.
550, pp. 354–359, 2017.

10

[9] R. J. Lorentz, “Amazons Discover Monte-Carlo,” in Computers and
Games (CG 2008), ser. Lecture Notes in Computer Science, vol. 5131,
2008, pp. 13–24.

[10] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo Tree
Search in Hex,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 4, pp. 251–258, 2010.

[11] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte Carlo Tree
Search in Lines of Action,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 4, pp. 239–250, 2010.

[12] Y. Björnsson and H. Finnsson, “CadiaPlayer: A Simulation-Based Gen-
eral Game Player,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 1, no. 1, pp. 4–15, 2009.

[13] N. R. Sturtevant, “An Analysis of UCT in Multi-Player Games,” ICGA
Journal, vol. 31, no. 4, pp. 195–208, 2008.

[14] P. Ciancarini and G. P. Favini, “Monte Carlo Tree Search in Kriegspiel,”
Artificial Intelligence, vol. 174, no. 11, pp. 670––684, 2010.

[15] J. A. M. Nijssen and M. H. M. Winands, “Monte-Carlo Tree Search
for the Hide-and-Seek Game Scotland Yard,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 4, pp. 282–
294, 2012.

[16] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte-Carlo Tree
Search Solver,” in Computers and Games (CG 2008), ser. Lecture Notes
in Computer Science (LNCS), vol. 5131, 2008, pp. 25–36.

[17] M. H. M. Winands and Y. Björnsson, “αβ-based Play-outs in Monte-
Carlo Tree Search,” in 2011 IEEE Conference on Computational Intel-
ligence and Games (CIG 2011). IEEE, 2011, pp. 110–117.

[18] M. Lanctot, M. H. M. Winands, T. Pepels, and N. R. Sturtevant, “Monte
Carlo Tree Search with Heuristic Evaluations using Implicit Minimax
Backups,” in 2014 IEEE Conference on Computational Intelligence and
Games, CIG 2014, 2014, pp. 341–348.

[19] H. Baier and M. H. M. Winands, “MCTS-Minimax Hybrids,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 7,
no. 2, pp. 167–179, 2015.

[20] L. V. Allis, M. van der Meulen, and H. J. van den Herik, “Proof-Number
Search,” Artificial Intelligence, vol. 66, no. 1, pp. 91–123, 1994.

[21] H. J. van den Herik and M. H. M. Winands, “Proof-Number Search and
Its Variants,” in Oppositional Concepts in Computational Intelligence,
2008, pp. 91–118.

[22] D. M. Breuker, “Memory Versus Search in Games,” Ph.D. dissertation,
Maastricht University, Maastricht, The Netherlands, 1998.

[23] A. Nagai, “Df-pn Algorithm for Searching AND/OR Trees and its
Applications,” Ph.D. dissertation, The University of Tokyo, Tokyo,
Japan, 2002.

[24] M. H. M. Winands, J. W. H. M. Uiterwijk, and H. J. van den Herik,
“An Effective Two-Level Proof-Number Search Algorithm,” Theoretical
Computer Science, vol. 313, no. 3, pp. 511–525, 2004.

[25] A. Kishimoto and M. Müller, “Search versus Knowledge for Solving
Life and Death Problems in Go,” in Proceedings of the 20th National
Conference on Artificial Intelligence, 2005, pp. 1374–1379.

[26] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake,
P. Lu, and S. Sutphen, “Checkers is Solved,” Science, vol. 317, no. 5844,
pp. 1518–1522, 2007.

[27] I.-C. Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan, and B.-T. Chen,
“Job-Level Proof-Number Search for Connect6,” in Computers and
Games (CG’10), ser. Lecture Notes in Computer Science, vol. 6515,
2011, pp. 11–22.

[28] J.-T. Saito and M. H. M. Winands, “Paranoid Proof-Number Search,” in
In Proceedings of the Computational Intelligence and Games Conference
(CIG’10), 2010, pp. 203–210.

[29] M. H. M. Winands, J. W. H. M. Uiterwijk, and H. J. van den Herik,
“Combining Proof-Number Search with Alpha-Beta Search,” in Pro-
ceedings of the Thirteenth Belgium-Netherlands Conference on Artificial
Intelligence, 2001, pp. 299–306.

[30] J.-T. Saito, G. Chaslot, J. W. H. M. Uiterwijk, and H. J. van den Herik,
“Monte-Carlo Proof-Number Search for Computer Go,” in Computers
and Games, ser. LNCS, vol. 4630, 2007, pp. 50–61.

[31] E. Doe, M. H. M. Winands, D. J. N. J. Soemers, and C. Browne,
“Combining Monte-Carlo Tree Search with Proof-Number Search,” in
IEEE Conference on Games (CoG), 2022, pp. 206–212.

[32] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. van den Herik, J. W. H. M.
Uiterwijk, and B. Bouzy, “Progressive Strategies for Monte-Carlo Tree
Search,” New Mathematics and Natural Computation, vol. 4, no. 3, pp.
343–357, 2008.

[33] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol. 47, no. 2–3, pp.
235–256, 2002.

[34] T. Cazenave and A. Saffidine, “Score Bounded Monte-Carlo Tree
Search,” in Computers and Games, ser. LNCS, vol. 6515, 2011, pp.
93––104.

[35] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii – The Ludemic General Game Sys-
tem,” in Proceedings of the 24th European Conference on Artificial
Intelligence (ECAI 2020), ser. Frontiers in Artificial Intelligence and
Applications, vol. 325, 2020, pp. 411–418.

[36] M. Genesereth, N. Love, and B. Pell, “General Game Playing: Overview
of the AAAI Competition,” AI Magazine, vol. 26, pp. 62–72, 2005.

[37] J. Kowalski, M. Mika, J. Sutowicz, and M. Szykuła, “Regular
Boardgames,” AAAI, vol. 33, no. 1, pp. 1699–1706, 2019.

[38] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General Game Playing: Game Description Language Specification,”
Stanford Logic Group, Tech. Rep. LG-2006-01, 2008.

[39] S. Sackson, A Gamut of Games. Random House, New York, NY, USA,
1969.

[40] M. J. Herskovits, “Wari in the New World.” The Journal of the Royal
Anthropological Institute of Great Britain and Ireland, vol. 62, p. 23–37,
1932.

[41] A. Kishimoto, M. H. M. Winands, M. Müller, and J.-T. Saito, “Game-
Tree Search Using Proof Numbers: The First Twenty Years,” ICGA
Journal, vol. 35, no. 3, pp. 131–156, 2012.

[42] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A General Reinforcement Learning Algorithm That
Masters Chess, Shogi, and Go Through Self-play,” Science, vol. 362,
no. 6419, pp. 1140–1144, 2018.

[43] K. Handscomb, “8×8 Game Design Competition: The Winning Game:
Breakthrough ... and Two Other Favorites,” Abstract Games, vol. 7, pp.
8–9, 2001.

[44] C. F. Sironi, J. Liu, and M. H. M. Winands, “Self-adaptive Monte Carlo
Tree Search in General Game Playing,” IEEE Transactions on Games,
vol. 12, no. 2, pp. 132–144, 2020.

[45] A. Saffidine, N. Jouandeau, and T. Cazenave, “Solving Breakthrough
with Race Patterns and Job-Level Proof Number Search,” in Advances
in Computer Games, ser. Lecture Notes in Computer Science, vol. 7168.
Springer, 2011, pp. 196–207.

[46] H. J. R. Murray, A History of Board-Games Other Than Chess. Oxford:
Clarendon, 1951.

[47] L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens, “Go-Moku
Solved by New Search Techniques,” Computational Intelligence, vol. 12,
pp. 7–23, 1996.

[48] Z. Tang, D. Zhao, K. Shao, and L. Lv, “ADP with MCTS Algorithm
for Gomoku,” in 2016 IEEE Symposium Series on Computational
Intelligence, SSCI 2016, Athens, Greece, December 6-9, 2016, 2016,
pp. 1–7.

[49] A. Saffidine and T. Cazenave, “Multiple-outcome Proof Number
Search,” in ECAI, 2012, pp. 708–713.

[50] J. R. Slagle and P. Bursky, “Experiments With a Multipurpose, Theorem-
Proving Heuristic Program,” J. ACM, vol. 15, no. 1, p. 85–99, 1968.

[51] A. Saffidine and T. Cazenave, “Developments on Product Propagation,”
in Computers and Games, ser. LNCS, vol. 8427, 2014, pp. 100–109.

11

APPENDIX

TABLE V
EXACT WINRATE VALUES FOR THE Cpn TUNING EXPERIMENT SHOWN IN FIGURE 3.

Game Cpn value
0.0 0.1 0.5 1.0 2.0 5.0 106

LOA 7×7 46.0± 3.09 64.1± 2.97 86.9± 2.09 90.4± 1.83 91.6± 1.72 82.2± 2.37 69.0± 2.87
LOA 8×8 45.2± 3.09 55.9± 3.08 81.9± 2.39 83.2± 2.32 80.5± 2.46 57.4± 3.06 32.3± 2.88

TABLE VI
EXACT WINRATE VALUES FOR THE DIFFERENT TIME SETTINGS COMPARISON SHOWN IN FIGURE 4.

LOA 7× 7
Variant 1/8s 1/4s 1/2s 1s 2s 4s
FSx 63.3± 2.99 70.9 ± 2.82 67.2± 2.91 65.6± 2.95 58.4± 3.06 53.5± 3.09
FSU 85.4± 2.19 90.4± 1.83 91.9± 1.69 93.2 ± 1.56 91.0± 1.78 84.0± 2.27
FxU 72.0± 2.78 77.3± 2.60 83.5± 2.30 90.4± 1.83 90.6 ± 1.80 83.6± 2.30
xSU 67.0± 2.92 84.1± 2.27 92.8± 1.60 91.1± 1.76 91.5± 1.73 87.2± 2.07

LOA 8× 8
Variant 1/8s 1/4s 1/2s 1s 2s 4s
FSx 51.9± 3.10 57.5± 3.07 65.6± 2.95 66.4 ± 2.93 59.0± 3.05 53.4± 3.09
FSU 60.0± 3.04 72.7± 2.76 85.4± 2.19 90.8± 1.79 96.2 ± 1.19 95.3± 1.31
FxU 59.2± 3.05 58.0± 3.06 73.4± 2.74 83.2± 2.32 91.5± 1.73 94.4 ± 1.43
xSU 55.4± 2.87 63.3± 2.99 82.7± 2.35 92.9 ± 1.59 93.7± 1.51 94.5± 1.40

MiniShogi
Variant 1/8s 1/4s 1/2s 1s 2s 4s
FSx 57.4± 3.07 53.9± 3.09 52.4± 3.10 53.2± 3.09 60.3 ± 3.03 56.1± 3.08
FSU 58.1± 3.06 57.4± 3.07 63.0± 2.99 65.8 ± 2.94 64.5± 2.97 58.6± 3.05
FxU 57.8± 3.06 56.8± 3.07 59.7± 3.04 64.5 ± 2.97 59.1± 3.05 54.1± 3.09
xSU 18.6± 2.41 20.5± 2.50 38.6± 3.02 60.3± 3.03 59.8± 3.04 56.6± 3.07

Knightthrough
Variant 1/8s 1/4s 1/2s 1s 2s 4s
FSx 79.9 ± 2.49 73.0± 2.75 58.6± 3.05 59.2± 3.05 68.4± 2.88 78.1± 2.56
FSU 83.8 ± 2.28 77.7± 2.58 62.9± 3.00 66.8± 2.92 68.2± 2.89 72.3± 2.78
FxU 50.4± 3.10 54.1± 3.09 56.9 ± 3.07 56.4± 3.08 50.5± 3.10 50.6± 3.10
xSU 62.0± 3.01 83.3± 2.31 66.8± 2.92 63.5± 2.99 66.2± 2.93 72.0± 2.78

Awari
Variant 1/8s 1/4s 1/2s 1s 2s 4s
FSx 39.9 ± 3.01 39.4± 2.99 38.1± 2.93 38.0± 2.94 32.7± 2.84 28.2± 2.71
FSU 56.6 ± 3.02 51.9± 3.07 41.6± 3.02 40.6± 3.01 33.6± 2.90 25.1± 2.67
FxU 64.8 ± 2.78 57.6± 2.84 55.0± 2.71 49.8± 2.72 48.0± 2.59 40.8± 2.36
xSU 65.9± 2.89 55.5± 3.05 45.1± 3.06 40.0± 3.01 37.1± 2.98 31.9± 2.87

TABLE VII
EXACT WINRATE VALUES FOR THE DIFFERENT CONTEMPT FACTOR COMPARISON SHOWN IN FIGURE 5.

Variant Contempt Factor
<-1.0 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

FxU 48.6± 2.70 46.7± 2.62 51.7± 2.62 54.9 ± 2.66 49.8± 2.60 49.9± 2.63 52.7± 2.65 50.0± 2.61 51.0± 2.68 47.1± 2.68
FSU 46.4± 2.83 46.4± 2.71 48.1± 2.78 50.0 ± 2.74 49.4± 2.75 47.2± 2.72 46.0± 2.73 45.6± 2.74 46.5± 2.77 47.3± 2.72
xSU 47.1± 2.85 46.4± 2.85 47.4± 2.85 46.7± 2.86 45.8± 2.81 46.4± 2.84 47.4± 2.82 48.0 ± 2.86 44.6± 2.82 44.9± 2.84

	Introduction
	Monte-Carlo Tree Search
	Proof-Number Search
	PN-MCTS Algorithm
	Final Move Selection
	Solving Subtrees
	UCT-PN

	Environment
	Ludii General Game System
	Game Domains
	Lines of Action
	Awari
	MiniShogi
	Knightthrough

	Experiments
	PN-Parameter
	Overhead Estimation

	PN-MCTS Experiments
	PN-MCTS Variants
	Final Move Selection
	Solving Subtrees
	UCT-PN

	Time Trends

	Double-Layer PN-MCTS
	Second-Layer Enhancements
	UCT-PN Rank Sorting
	Final Move Selection Contempt Factor

	Conclusions and Future Research
	Acknowledgments
	References
	Appendix

