
Split Moves for Monte-Carlo Tree Search

Jakub Kowalski1, Maksymilian Mika1, Wojciech Pawlik1,
Jakub Sutowicz1, Marek Szykuła1,

Mark H. M. Winands2

1University of Wrocław, Faculty of Mathematics and Computer Science
2Maastricht University, Department of Data Science and Knowledge Engineering



Game Tree
8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

8 QZ0Z0Z0Z
7 ZpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

a7-a8Q

8 RZ0Z0Z0Z
7 ZpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

a7-a8R

8 BZ0Z0Z0Z
7 ZpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

a7-a8B

8 NZ0Z0Z0Z
7 ZpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

a7-a8N

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0S
5 Z0Z0Z0Z0
4 0ZpZ0a0Z
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Rh4-h6
8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0ZR
4 0ZpZ0a0Z
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Rh4-h5
8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0aKS
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Kh3-g4

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0Z0
2 0Z0Z0ZKZ
1 Z0Z0Z0Z0

a b c d e f g h

Kh3-g2



Orthodox move

a7-a8Q a7-a8R a7-a8B a7-a8N Rh4-h6 Rh4-h5 Kh3-g4 Kh3-g2

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: Mod split strategy

a7

a8Q

�+

a8R

�+

a8B

�+

a8N

�+

b6 Rh4

h6

�+

h5

�+

g4 f4

Kh3

g4

�+

g3 g2

�+

h2

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: Mod split strategy

a7

a8Q

�+

a8R

�+

a8B

�+

a8N

�+

b6 Rh4

h6

�+

h5

�+

g4 f4

Kh3

g4

�+

g3 g2

�+

h2

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: Mod split strategy

a7

a8Q

�+

a8R

�+

a8B

�+

a8N

�+

b6 Rh4

h6

�+

h5

�+

g4 f4

Kh3

g4

�+

g3 g2

�+

h2

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0S
5 Z0Z0Z0Z0
4 0ZpZ0a0Z
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: Mod split strategy

a7

a8Q

�+

a8R

�+

a8B

�+

a8N

�+

b6 Rh4

h6

�+

h5

�+

g4 f4

Kh3

g4

�+

g3 g2

�+

h2

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0S
5 Z0Z0Z0Z0
4 0ZpZ0a0Z
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: ModPlus split strategy

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: ModPlus split strategy

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: ModPlus split strategy

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: ModPlus split strategy

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0S
5 Z0Z0Z0Z0
4 0ZpZ0a0Z
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Split move: ModPlus split strategy

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0S
5 Z0Z0Z0Z0
4 0ZpZ0a0Z
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Nodal states

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3



Intermediate states

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3



Dead states

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3



Common prefix of moves: Rh4h6 and Rh4h5

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3



Motivation and applicability

▶ Applicable to any game-playing algorithm: Monte-Carlo Tree Search, Min-Max,
evolutionary search, neural networks, . . .

Except simple cases, the method and its effects were not previously investigated in the
literature.

▶ Improve efficiency.

▶ Reduce branching factor.

▶ Share information between moves.



Motivation and applicability

▶ Applicable to any game-playing algorithm: Monte-Carlo Tree Search, Min-Max,
evolutionary search, neural networks, . . .

Except simple cases, the method and its effects were not previously investigated in the
literature.

▶ Improve efficiency.

▶ Reduce branching factor.

▶ Share information between moves.



Motivation and applicability

▶ Applicable to any game-playing algorithm: Monte-Carlo Tree Search, Min-Max,
evolutionary search, neural networks, . . .

Except simple cases, the method and its effects were not previously investigated in the
literature.

▶ Improve efficiency.

▶ Reduce branching factor.

▶ Share information between moves.



Monte Carlo Tree Search

8/13

5/7 1/2 1/3

1/2 0/1 2/3 1/1 1/1 0/1

0/1 1/1 0/1



Monte Carlo Tree Search – selection

8/13

5/7 1/2 1/3

1/2 0/1 2/3 1/1 1/1 0/1

0/1 1/1 0/1



Monte Carlo Tree Search – expansion

8/13

5/7 1/2 1/3

1/2 0/1 2/3 1/1 1/1 0/1

0/1 1/1 0/1

0/0



Monte Carlo Tree Search – simulation

8/13

5/7 1/2 1/3

1/2 0/1 2/3 1/1 1/1 0/1

0/1 1/1 0/1

0/0



Monte Carlo Tree Search – backpropagation

9/14

6/8 1/2 1/3

1/2 0/1 3/4 1/1 1/1 0/1

0/1 2/2 0/1

1/1



Semisplit MCTS

▶ Effective handling of “dead” states.

▶ Different strategies in selection and simulation phases.

▶ Variant: raw/nodal, roll-up (combining semimoves dynamically), final selecton
strategies, . . .

▶ Heuristics MAST and RAVE: division and joining of moves, context and mixed
variants.

MCTS variant Standard Split Join Context
Tree Simulation MAST RAVE MAST RAVE MAST RAVE MAST RAVE
orthodox orthodox ✓J ✓J ✓ – ✓ ✓ ZZ✓J ZZ✓J

orthodox semisplit – – ✓ – – ✓ ✓ ZZ✓J

semisplit orthodox – – ✓ ✓ ✓* – ✓ ✓
semisplit semisplit ✓S ✓S ✓ ✓ – – ✓ ✓
roll-up orthodox – – ✓ – ✓* – ✓ ✓
roll-up semisplit – – ✓ – – – ✓ ✓



Semisplit MCTS

▶ Effective handling of “dead” states.

▶ Different strategies in selection and simulation phases.

▶ Variant: raw/nodal, roll-up (combining semimoves dynamically), final selecton
strategies, . . .

▶ Heuristics MAST and RAVE: division and joining of moves, context and mixed
variants.

MCTS variant Standard Split Join Context
Tree Simulation MAST RAVE MAST RAVE MAST RAVE MAST RAVE
orthodox orthodox ✓J ✓J ✓ – ✓ ✓ ZZ✓J ZZ✓J

orthodox semisplit – – ✓ – – ✓ ✓ ZZ✓J

semisplit orthodox – – ✓ ✓ ✓* – ✓ ✓
semisplit semisplit ✓S ✓S ✓ ✓ – – ✓ ✓
roll-up orthodox – – ✓ – ✓* – ✓ ✓
roll-up semisplit – – ✓ – – – ✓ ✓



Implementation

▶ Based on Regular Boardgames General Game Playing system.

▶ The compiler generates a reasoner with automatically split moves, according to the
given split strategy.

▶ Just-in-time compilation which takes into account the game rules, algorithm of the
agent, configuration parameters.

▶ Many low-level optimizations, dedicated data structures.

▶ Over 700 available configurations.



Differences in speed

Game
Orthodox MCTS Semisplit MCTS

States/sec. Avg. branching factor Speed-up factor Avg. branching factor

Amazons 236 269 457.40 11.42 6.91

Breakthrough 2 495 330 25.69 2.03 7.70

Breakthru 11 088 12 958.00 174.38 12.13

Chess 285 631 22.80 4.96 2.96

Chess no-check 710 881 33.22 3.89 3.92

English Draughts 4 411 795 5.22 1.09 2.50

Fox and hounds 13 940 118 4.12 0.95 2.65

Go 173 452 130.35 0.33 72.56

Knightthrough 2 159 981 37.32 2.51 8.65

Pentago 492 027 171.24 3.33 15.09

Skirmish 679 837 34.35 4.07 4.29

The Mill Game 2 298 726 14.85 1.91 4.25



Results (win ratios)

Vanilla MCTS
Tree: Semisplit nodal
Simulation: Semisplit
Split strategy: ModPlus

72.47%
61.86%
72.47%
61.86%

89 49 100 96 62 44 49 83 87 88 83 40

Tree: Orthodox
Simulation: Semisplit
Split strategy: Mod

67.08%
50.21%
67.08%
50.21%

86 64 63 96 56 55 48 59 82 72 81 43

MCTS with action-based heuristics: MAST and RAVE
Tree: Semisplit nodal, RAVE-split
Simulation: Semisplit, MAST-split
Split strategy: Mod

58.65%
51.85%
58.65%
51.85%

66 38 100 97 22 43 61 66 71 68 53 17

Tree: Roll-up nodal
Simulation: Semisplit, MAST-split
Split strategy: Mod

68.26%
50.47%
68.26%
50.47%

67 79 100 93 60 68 32 65 82 74 79 21

1. Amazons, 2. Breakthrough, 3. Breakthru, 4. Chess, 5. Chess (no-check), 6. English Draughts,
7. Fox and Hounds, 8. Go, 9. Knightthrough, 10. Pentago, 11. Skirmish, 12. The Mill Game



Summary

Division of moves
▶ Wide applicability: many problems (games) and algorithms.
▶ No previous studies: so far, split moves were applied only to trivial cases.

MCTS Agent
▶ Lots of variants.
▶ Highly-optimized, generic implementation.

Results
▶ Significant improvement of results on average.
▶ Highly dependent on the game. Sometimes more complex variant are required.

Future work
▶ Applying to other algorithms.
▶ How to select the best variant and split strategy for the given game?

Thank you!



Summary

Division of moves
▶ Wide applicability: many problems (games) and algorithms.
▶ No previous studies: so far, split moves were applied only to trivial cases.

MCTS Agent
▶ Lots of variants.
▶ Highly-optimized, generic implementation.

Results
▶ Significant improvement of results on average.
▶ Highly dependent on the game. Sometimes more complex variant are required.

Future work
▶ Applying to other algorithms.
▶ How to select the best variant and split strategy for the given game?

Thank you!


