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Orthodox move
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Split move: Mod split strategy
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Split move: ModPlus split strategy
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Split move: ModPlus split strategy
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Nodal states
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Intermediate states
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Dead states
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Common prefix of moves: Rh4h6 and Rh4h5
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Motivation and applicability

▶ Applicable to any game-playing algorithm: Monte-Carlo Tree Search, Min-Max,
evolutionary search, neural networks, . . .

Except simple cases, the method and its effects were not previously investigated in the
literature.

▶ Improve efficiency.

▶ Reduce branching factor.

▶ Share information between moves.



Motivation and applicability

▶ Applicable to any game-playing algorithm: Monte-Carlo Tree Search, Min-Max,
evolutionary search, neural networks, . . .

Except simple cases, the method and its effects were not previously investigated in the
literature.

▶ Improve efficiency.

▶ Reduce branching factor.

▶ Share information between moves.



Motivation and applicability

▶ Applicable to any game-playing algorithm: Monte-Carlo Tree Search, Min-Max,
evolutionary search, neural networks, . . .

Except simple cases, the method and its effects were not previously investigated in the
literature.

▶ Improve efficiency.

▶ Reduce branching factor.

▶ Share information between moves.



Monte Carlo Tree Search
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Monte Carlo Tree Search – selection
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Monte Carlo Tree Search – expansion
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Monte Carlo Tree Search – simulation
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Monte Carlo Tree Search – backpropagation
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Semisplit MCTS

▶ Effective handling of “dead” states.

▶ Different strategies in selection and simulation phases.

▶ Variant: raw/nodal, roll-up (combining semimoves dynamically), final selecton
strategies, . . .

▶ Heuristics MAST and RAVE: division and joining of moves, context and mixed
variants.

MCTS variant Standard Split Join Context
Tree Simulation MAST RAVE MAST RAVE MAST RAVE MAST RAVE
orthodox orthodox ✓J ✓J ✓ – ✓ ✓ ZZ✓J ZZ✓J

orthodox semisplit – – ✓ – – ✓ ✓ ZZ✓J

semisplit orthodox – – ✓ ✓ ✓* – ✓ ✓
semisplit semisplit ✓S ✓S ✓ ✓ – – ✓ ✓
roll-up orthodox – – ✓ – ✓* – ✓ ✓
roll-up semisplit – – ✓ – – – ✓ ✓
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Implementation

▶ Based on Regular Boardgames General Game Playing system.

▶ The compiler generates a reasoner with automatically split moves, according to the
given split strategy.

▶ Just-in-time compilation which takes into account the game rules, algorithm of the
agent, configuration parameters.

▶ Many low-level optimizations, dedicated data structures.

▶ Over 700 available configurations.



Differences in speed

Game
Orthodox MCTS Semisplit MCTS

States/sec. Avg. branching factor Speed-up factor Avg. branching factor

Amazons 236 269 457.40 11.42 6.91

Breakthrough 2 495 330 25.69 2.03 7.70

Breakthru 11 088 12 958.00 174.38 12.13

Chess 285 631 22.80 4.96 2.96

Chess no-check 710 881 33.22 3.89 3.92

English Draughts 4 411 795 5.22 1.09 2.50

Fox and hounds 13 940 118 4.12 0.95 2.65

Go 173 452 130.35 0.33 72.56

Knightthrough 2 159 981 37.32 2.51 8.65

Pentago 492 027 171.24 3.33 15.09

Skirmish 679 837 34.35 4.07 4.29

The Mill Game 2 298 726 14.85 1.91 4.25



Results (win ratios)

Vanilla MCTS
Tree: Semisplit nodal
Simulation: Semisplit
Split strategy: ModPlus

72.47%
61.86%
72.47%
61.86%

89 49 100 96 62 44 49 83 87 88 83 40

Tree: Orthodox
Simulation: Semisplit
Split strategy: Mod

67.08%
50.21%
67.08%
50.21%

86 64 63 96 56 55 48 59 82 72 81 43

MCTS with action-based heuristics: MAST and RAVE
Tree: Semisplit nodal, RAVE-split
Simulation: Semisplit, MAST-split
Split strategy: Mod

58.65%
51.85%
58.65%
51.85%

66 38 100 97 22 43 61 66 71 68 53 17

Tree: Roll-up nodal
Simulation: Semisplit, MAST-split
Split strategy: Mod

68.26%
50.47%
68.26%
50.47%

67 79 100 93 60 68 32 65 82 74 79 21

1. Amazons, 2. Breakthrough, 3. Breakthru, 4. Chess, 5. Chess (no-check), 6. English Draughts,
7. Fox and Hounds, 8. Go, 9. Knightthrough, 10. Pentago, 11. Skirmish, 12. The Mill Game



Summary

Division of moves
▶ Wide applicability: many problems (games) and algorithms.
▶ No previous studies: so far, split moves were applied only to trivial cases.

MCTS Agent
▶ Lots of variants.
▶ Highly-optimized, generic implementation.

Results
▶ Significant improvement of results on average.
▶ Highly dependent on the game. Sometimes more complex variant are required.

Future work
▶ Applying to other algorithms.
▶ How to select the best variant and split strategy for the given game?

Thank you!
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