
Efficient Reasoning in Regular Boardgames

Jakub Kowalski, Rados law Miernik,
Maksymilian Mika, Wojciech Pawlik,

Jakub Sutowicz, Marek Szyku la, Andrzej Tkaczyk

University of Wroc law, Poland

COG 2020

This work was supported by the National Science Centre, Poland under project number

2017/25/B/ST6/01920.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



General Game Playing

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



General Game Playing (GGP)

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



General Game Playing renaissance

The old days

Stanford’s GGP leading the field since 2005

Many valuable contributions (MCTS, knowledge representation, . . . )

Last Annual International General Game Playing Competition was organized in 2016

Recent years

Several alternative languages and platforms had been released:

multiple author groups,
variety of game types,
diverse methodologies,
different purposes under consideration.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



General Game Playing renaissance

Authorship:

hobbyists (Ai Ai),
researchers (Regular Boardgames, Ludii, GBG),
big companies (OpenSpiel, Polygames).

Expressiveness:

limited number of boardgames (GBG),
any turn-based games (Regular Boardgames, Ludii),
Atari-like real-time games (ALE, GVGAI).

Methodology:

regular expressions and automata (Regular Boardgames),
objective scripting language (GVGAI),
high-level keywords (Ludii),
underlying game-specific implementations (Ai Ai, GBG, OpenSpiel, Polygames).

Purpose:

efficiency and generality under a uniform mechanism (Regular Boardgames),
human-user game-playing experience (Ai Ai),
study on structure, history, and modeling of games (Ludii),
support for generalized reinforcement learning (OpenSpiel, Polygames).

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



This paper

Overview

We present the technical side of reasoning in Regular Boardgames (RBG) language:

universal GGP formalism for the class of finite deterministic games with perfect information,
encoding rules in the form of regular expressions,
research tool that aims in development of general algorithms for games,
aiming for both both generality and efficiency at the same time.

Contributions

Present the insights of the RBG compiler and its optimizations.

Perform an in-depth efficiency comparison with other popular and currently developed
GGP systems and highly optimized game-specific reasoners using RBG interface.

Discuss issues and methodology of producing such benchmarks, so they can be used as a
valid point of reference.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Regular Boardgames

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Brief introduction to RBG

Basic notation

A game embedding in RBG consists of a board, variables, player roles, and rules.

The game state contains a configuration of pieces on the board, values of the variables,
the current player, the current position on the board, and the current index (position) in
the rules.

The board is a directed graph with labeled edges, called directions.

The current player, in his turn, can perform a sequence of elementary actions, which,
when applied sequentially, can modify the game state in a specific way.

For an action to be legal, it must be both valid for the current game state when it is
applied and also permitted by the rules.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Brief introduction to RBG

Actions

1 Shift, e.g., left or up, which changes the current position on the board following the
specified direction. When there is no such edge, the action is invalid.

2 On, e.g., {whiteQueen}, which does not modify the game state but checks if the
specified piece is on the board at the current position.

3 Off, e.g., [whiteQueen], which puts the specified piece at the current position on the
board. It is always valid.

4 Comparison, e.g., {$ turn==100}, which compares two arithmetic expressions involving
variables.

5 Assignment, e.g., [$ turn=turn+1], which assigns to a variable the value of an
arithmetic expression.

6 Switch, e.g., ->white, which changes the current player to the specified one. This action
ends a move.

7 Pattern, e.g., {? left up}, which is valid only if there exists a legal sequence of actions
under the specified rules; in the example, if from the current square there is a path with
two edges labeled by left and up.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Brief introduction to RBG

Moves and playouts

A sequence of actions ending with a switch defines a move.

{wQueen} [empty] up up [wQueen] right [arrow] ->black

A move is the subsequence of (indexed) actions that are offs, assignments, and switches,
together with the positions in rules regular expression where they are applied.

These are precisely the actions that modify the game state, except the board position and
the rules index.

A playout ends when the current player has no legal moves.

Each player’s score is given in a dedicated variable.

Game description

The rules are given by a regular expression over the alphabet of the above actions.

The language defined by this expression contains all potentially legal sequences of actions.

C-like macros for a concise encoding.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



RBG encoding of Amazons (orthodox version, non-splitted)

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Optimizations in RBG

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



RBG Infrastructure

RBG compiler

Takes RBG game description as input.

Generates a C++ module implementing a reasoner for this game.

Reasoner satisfies a common interface for computing legal moves, reading parameters,
accessing the board, etc.

Computing legal moves

A fundamental part of the reasoner.

DFS-based algorithm on the automaton that is the NFA representing the game rules joint
with the board graph.

Its straightforward implementation already provides a decent level of efficiency.

Optimizations

Yet, through a prior analysis of the game rules, we were able to improve it significantly.

In this work, we describe a few of the most important optimizations.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Shift tables

Complex shift-only behaviours

Changing the current square into any square:
(left* + right*)(up* + down*)

Changes the square in the column to the top row:
up* {! up}

Optimization

Number of possibilities from such sequences is limited.

They can be represented by maps that, for each given square, stores a subset of valid
destinations.

We replace those sequence with one elementary shift table action, which simply
enumerates all the possibilities with non-deterministic transitions.

Further simplifications if the shift table is deterministic or independent on the current
square.

Significantly affects every game.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Visited check skipping

Example (from Hex)

((NW + NE + E + SE + SW + W) {x})* {! NW}

checks whether from the current square there is a path on squares with x to the north-west line

Optimization

Normally we need to check whether a pair of the current square and the index in the rules
has been already visited.

Because by applying actions we could return to the same square and position in the rules.

But in many typical cases, this is not possible.

Which can be detected (by analyzing the transitions in the joint automaton) and omitted.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Bounding move length

Straightness

Valid RBG games have to be finite.

The moves have a bounded maximal length measured in the number of modifiers.

(Some theoretical analysis and algorithms in the original RBG paper)

In breakthrough, each move has length 2.

In chess, the maximum move length is 7.

For such cases we may use data structure with this optimal size, also avoiding any
dynamic memory allocations.

Calculating bounding move length

Easy if the joint automaton does not contain cycles containing a modifier and not
containing a switch.

In other case (draughts family of games), they could potentially generate infinite moves.

The limit exist but calculating it in general is a PSPACE-hard problem.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Monotonic classes of moves

We will split the game states into classes such that they share their legal moves.

Let S be the set of all reachable game states from the initial state.

For S ∈ S, let moves(S) be the set of all legal moves.

Let M =
⋃

S∈S moves(S).

Monotonic classifier

A function c : S→ N is monotonic classifier if
for every state S ∈ S, we have moves(S ′) ⊆ moves(S)

for every state S ′ ∈ S that is a successor of S in the game tree with c(S) = c(S ′).

Monotonicity class

A trivial monotonic classifier assigns a different class number to each state.

The smaller number of classes is better.

A game description is k-move-monotonic if there exists a monotonic classifier assigning at
most k class numbers.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Monotonic classes of moves

Generating legal moves

Especially in simple games, the bottleneck is the general interface itself.

In RBG compiler, all legal moves must be generated every time from scratch.

It provides many advantages, but sometimes causes an efficiency drawback.

For simple games with many moves, generating them is costly.

Modifying the list of legal moves would be faster.

Application

In RBG, a natural candidate to classify moves are switches.

For each switch-related game state we check if the legal moves are a superset of the legal
moves of every successor game state.

We use several conditions to compute this property.

Requires shift tables to detect if moves do not depend on the current square.

We can determine that e.g., Connect4, Gomoku, and Hex are 2-monotonic.

In Pentago (split), we can assign one monotonic class for the moves related to rotation.
J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Efficiency Gain

General behavior

The effects of the optimizations strongly correlate.

Monotonic classes requires shift tables.

Some optimizations (monotonic classes, bounding move length) provide a boost only for
specific types of games.

Importance of optimizations

The most significant and universal optimization is shift tables.

The second on, is visited checks optimization.

Bounding move length is a decent optimization actually affecting a large class of games.

Monotonic classes affect only simple games – but in these cases listing all moves is
computationally costly.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



The impact of specific optimizations of the RBG compiler

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Comparison of Different Systems

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Other GGP Approaches: Informal classification

“true” GGP with “closed” description language

Trying to provide a uniform and minimal formalism.

So that each new game can be effectively implemented purely in the proposed language.

GDL, Toss, Regular Boardgames

“hybrid”

Try to provide high-level concepts that cover parts of game rules.

Describe games using an extendable set of generalized keywords.

A new game that requires a new rule type usually needs an extension of the language.

Metagame, Ludi, VGDL, Ludii

Game-specific with interface

Just make use of a common interface for game-specific implementations.

Every game must be manually implemented in a usual programming language.

Ai Ai, GBG, OpenSpiel, Polygames, Zillion of Games

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Stanford’s GDL

Language

International General Game Playing Competition stared in 2005.

The most well-known and deeply-researched GDL.

Can describe any turn-based, simultaneous-moves, finite, and deterministic n-player game
with perfect information.

High-level, strictly declarative language based on Datalog.

Does not provide any predefined functions.

Game descriptions are usually long and hard to understand.

Reasoning

Very computationally expensive – processing requires logic resolution.

Many games expressible in GDL could not be played by any program at a decent level.

Some games are not playable at all, sometimes simplified version are implemented.

Fastest reasoners are based on propositional networks (propnets).

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Ludii

Language

Successor of Ludi, famous for its market-selling procedurally generated boardgames.

Designed primarily to chart the historical development of games and explore their role in
human culture.

Additional tools for agent implementations, game visualizations and human playing.

Based on a large number of ludemes, conceptual units of game-related information,
encoded in the underlying Java implementation.

Well suited for procedural content generation.

Games are usually concise, but hard to understand without documentation of each ludeme.

Large number of implemented games.

Advanced GUI, human-playable and with game/algorithm analyzing tools.

Reasoning

The efficiency is similar to the one of a GDL propnet.

Closed-source with one reference implementation provided.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Ai Ai

Language

Games hand-coded in Java (for efficiency), or assembled from large blocks using the
Modular Game Language – a scripting language based on JSON.

Still considered as a general game playing approach.

User-friendly GUI, customizable AI settings and game analysis.

Reasoning

Almost all of the games are programmed directly in Java.

The reasoners are game-specific with a common interface.

Very fast, using low-level game-specific optimizations.

Closed-source.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Comparison of the reasoning efficiency of different GGP systems

For some games we had developed game-specific reasoners (in C++) that implement the
common RBG interface

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



The Results

There is a large gap between systems with abstract languages (GDL, Ludii) and systems
with game-specific implementations (Ai Ai).

RBG achieves similar performance to game-specific Ai Ai implementations.

But results of Ai Ai vary depending on the game depending on an effort put in optimizing
a game-specific implementation.

Our game-specific implementations are faster than almost everything else.

The RBG interface is not a barrier.

Automatically generated RBG reasoners can still be significantly optimized.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Impact of Methodology

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Influence of the Rules Implementation

Game matching for GGP

A fair game matching is a common problem when comparing different GGP systems.

By the same games we understand those that have isomorphic game trees, including
win/draw/loss distinction in terminal states.

Differences between game encodings can have from minimal to really huge impact on the
obtained results.

Game matching in this paper

Games in RBG are matched with the existing implementations in GDL.

For other systems, some differences exist.

Cases marked with the star are minor rule variations, so that the comparison remain
meaningful.

Chess and Arimaa in Ai Ai implement, among others, the threefold repetition rule, which
is costly.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Influence of the Rules Implementation: Amazons Example

Orthodox version

The player’s single turn consists of moving a queen and shooting an arrow.

First player moves: 2176.

Average branching factor: 374 for the first player, 299 for the second.

Commonly used split

The player turn is split in two: firstly a queen movement is selected, and then an arrow
shot from this queen.

The game tree that is not isomorphic with the orthodox version.

It considerably reduces the branching factor and in the result the computation time.

Differences

In RBG, split implementation is more than 6 times faster.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Comparison of efficiency of different variants of Amazons

Even faster split variants

It is possible to encode many more split variants.

Some of them over two times faster than split2.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Random Generators and Benchmark Procedures

Choice of random generator

We have found that the choice of a random number generator can substantially influence
the reasoner’s speed.

This may occur when the number of simulations is huge enough.

We have tested three methods, varying in speed and quality:

combining std::uniform int distribution with std::mt19937,
a reimplemented Java method from java.util.Random,
a modern unbiased drawing algorithm by D. Lemire combined with a fast Mersenne Twister
boost::random::mt11213b.

From our experience, the choice of reasonable generator does not influence the quality of
agent nor change the statistics, but it impacts the cost of computing.

Benchmark procedure itself

The whole benchmark procedure (time measurements, gathering statistics, etc.) can also
significantly affect speed.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



The impact of the used random generator

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Takeaway

Comparing the efficiency in different game variants may result in huge skewing of the
results.

Comparisons in GGP domain are especially vulnerable.

Sometimes what seems to be small difference may have large impact.

In case of extremely fast computations, significant differences may be caused by the
overlying interface.

As well as by the underlying implementations of the common procedures.

Some standardised benchmark methods for reasoners should be developed, to allow and
ensure fair, reproducible, and transparent comparisons.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Conclusion

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Regular Boardgames

A modern general game playing system.

Open-source.

Aiming for efficiency and knowledge-based analysis.

Describing games via an abstract, concise, minimal, and well-defined formal language.

With environment consisting of:

the game compiler to C++,
a network-based game manager,
a high-level API allowing writing AI in Python,
a database of games.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Reasoning efficiency

We have described a few optimizations of the RBG compiler,

performed extensive experiments comparing the efficiency of five modern GGP systems,

discussed some issues, so far overlooked, regarding benchmark procedures.

Results

RBG significantly outperforms systems based on other abstract languages,

has a comparable (with a high variation) performance to game-specific reasoners of other
systems as Ai Ai.

There is still potential for optimization.

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames



Thank you

J. Kowalski, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szyku la, A. Tkaczyk Efficient Reasoning in Regular Boardgames


