
Regular Boardgames
Jakub Kowalski, Maksymilian Mika,

Jakub Sutowicz, MarekSzykuła
Institute of Computer Science, University of Wrocław, Poland

Correspondence: jko@cs.uni.wroc.pl

General Game Description Languages

Metagame
• Formally generalizes chess-like games.
• Large number of predefined keywords,

many special cases (e.g., promotions).
• Still cannot encode some core mechanics

of chess or shogi.

Ludi
•Designed solely for the sake of procedu-

ral generation of game rules.
• Broad set of predefined concepts.
•High-level manner, only combinatorial

games (no chess, etc.).

Simplified Boardgames
• Regular expressions to encode move-

ment of chess-like pieces, each piece sep-
arately.
•Does not require extended vocabulary,

yet has very limited expressiveness.

Stanford’s GDL
•Describes any turn-based, finite, and de-

terministic n-player game with perfect
information.
• Strictly declarative, with no predefined

concepts, only a few keywords.
• International General Game Playing

Competition (2005-2016).
•Used to be important research domain

with many valuable contributions.
•Currently a number of publications and

players plummeted.

VGDL
• Real-time, Atari-like video games
•General Video Game AI Competition

(2014-present, multiple tracks)
• Forward model instead of the game

rules.
• Limited knowledge-based approaches.

Regular Boardgames (RBG)
The main goal of the language is to allow effective computation of complex games, while at the

same time being universal and allowing concise and easy to process game descriptions that
intuitively correspond to the game structure. The base concept is a use of regular languages to

describe legal sequences of actions that players can apply to the game state.

Game Definition
G = (Players ,Board ,Pieces ,Variables ,Bounds , InitialState,Rules)

• Players: finite non-empty set of players. E.g., {white, black}.
• Board: static board structure without pieces, i.e., a finite directed multigraph with la-

beled edges (Vertices ,Dirs , δ).
Edges are defined by a function δ : Vertices × Dirs → Vertices ∪ {⊥}.
• Pieces: elements that may be placed on the board (always one per square).

E.g., {empty ,wPawn, bPawn,wKnight , bKnight , . . .}.
•Variables: named storages for integer values that can serve as counters, flags and for

players’ scores.
• Bounds: maximum values for variables, Bounds : Variables → N.
• InitialState: arbitary semi-state of the game.
•Rules: regular expression over the alphabet of actions encoding the game tree.

Game State
S = (player , P, V, s) (semi-state)

• player ∈ Players : current player.
• P : Vertices → Pieces : complete assignment. specifying the pieces that are currently on

the board.
• V : Variables → N: values of the variables.
• s ∈ Vertices : current position on board.

Game State

A semi-state S with additionally the rules index r ∈ N.
It contains all information that may change during a play.

Actions (alphabet)
Elementary operations that can be applied to a semi-state S. They modify S and/or veri-
fies some condition.
• Shift: denoted by dir ∈ Dirs . Changes the position s to δ(s, dir).
•On: denoted by a subset X ⊆ Pieces . Checks if P (s) ∈ X .
•Off: denoted by [x] for x ∈ Pieces . Sets P (s) = x.
•Assignment: denoted by [$ v = e] for v ∈ Variables and e being an arithmetic expression.

Sets value of a variable.
•Comparison: denoted by {$ e1 ⊗ e2}, where e1, e2 are arithmetic expressions , and ⊗

is a relational operator on integers. Valid only if after evaluating the expressions, the
relation is true.
• Switch: →p, where p ∈ Players . Changes the current player to p.

Example: single move of a white knight in chess
. {wKnight} [empty] left up up {empty} [wKnight]→black

• Pattern: denoted by either {?M} or {!M}, where M is a regular expression without
switches. Conditional statement – valid only if the sequence of actions is legal/illegal in
the current state.
Example: test for leaving a white king in check
.

(
! (standard black actions) {$wKing = 0}

)
→black .

•Keeper: a special player called keeper (→→), performing game-manager actions. It is im-
portant for the efficiency reasons. Any keeper’s legal sequences of actions have to end
in the same state.
Example: check winning condition and end the play
. →→

(
{? white wins} [$white=100] [$ black=0]→→∅ + {! white wins}→black

)
RBG Language

Low-level RBG

•Directly represents an abstract RBG de-
scription in the text.
• Specify rules defining a few keywords

using of the form #name =definition.
• Easily machine-processable (e.g. for

agents, game manager).

High-level RBG

•More concise and human-readable
•Can be separately converted to LL-RBG.
•Allows extensions without the need to

modify low-level implementations.
• Simple substitution C-like macro system.
• Predefined generators for typical boards.

Figure 1: The complete RBG description of breakthrough.

Figure 2: The RBG description of hex (without complete board declaration).

Expressiveness and Complexity
RBG can describe every finite deterministic game with perfect information, i.e. we can define in

RBG any arbitrary finite game tree.

Theorem. RBG is universal for the class of finite deterministic games with full information.

Straight RBG
We have defined subclasses of RBG that exhibit better computational properties.

Figure 3: Complexity of basic decision problems.

Experiments
We have implemented a computational package for RBG: a parser (of HL-RBG and LL-
RBG), an interpreter that performs reasoning, a compiler that generates a reasoner with a
uniform interface, and a game manager with example simple players.
The package is available at https://github.com/marekesz/rbg1.0/.

Figure 4: Efficiency comparison. The average number of nodes per second for a selection of classical games.

Summary

, RBG in a uniform way general-
izes concepts existing in human-made
boardgames using well-known formal-
ism of regular languages.

, It allows very efficient reasoning.
, RBG is the only GGP language that

can process complex games, e.g. arimaa,
non-simplified checkers, go.

, Existing board and piece concepts pro-
vide a natural base for player heuristics

, Two levels of syntax allow to extend vo-
cabulary without changes to the player
implementations.

, Rules are clearly separated from the par-
ticular instance – which leads to general-
ized GGP task.

, The language structure makes it conve-
nient for procedural content generation.

, It is easy to extend RBG to handle e.g.,
imperfect information.

Acknowledgments
This work was supported by the National Science Centre, Poland under project number 2017/25/B/ST6/01920.

