
Evaluating Chess-like Games Using Generated
Natural Language Descriptions

Jakub Kowalski?, Łukasz Żarczyński, and Andrzej Kisielewicz??

1 Institute of Computer Science, University of Wrocław, jko@cs.uni.wroc.pl
2 Institute of Computer Science, University of Wrocław, luk.zarczynski@gmail.com

3 Institute of Mathematics, University of Wrocław, kisiel@math.uni.wroc.pl

Abstract. We continue our study of the chess-like games defined as
the class of Simplified Boardgames. We present an algorithm generating
natural language descriptions of piece movements that can be used as
a tool not only for explaining them to the human player, but also for
the task of procedural game generation using an evolutionary approach.
We test our algorithm on some existing human-made and procedurally
generated chess-like games.

1 Introduction

The task of Procedural Content Generation (PCG) [1] is to create digital content
using algorithmic methods. In particular, the domain of games is the area, where
PCG is used for creating various elements including names, maps, textures,
music, enemies, or even missions. The most sophisticated and complex goal is to
create the complete rules of a game [2–4].

Designing a game generation algorithm requires restricting the set of possible
games to some well defined domain. This places the task into the area of General
Game Playing, i.e. the art of designing programs which can play any game from
some fixed class of games. The use of PCG in General Game Playing begins with
the Pell’s Metagame system [5], describing the so-called Symmetric Chess-like
Games. The evaluation of the quality of generated games was left entirely for
the human expert.

One of the most prominent PCG examples is Browne’s Ludi system [6],
which used genetic programming combined with a simulation-based self-play
evaluation function, based on the broad range of aesthetic measures, to generate
combinatorial boardgames. It produced the first fully computer-invented games
to be commercially published.

Experiments on evolving rules of the card games, using grammar-guided ge-
netic programming combined with simulation-based fitness function and MCTS

? Supported in part by the National Science Centre, Poland under project number
2014/13/N/ST6/01817.

?? Supported in part by the National Science Centre, Poland under project number
2015/17/B/ST6/01893.

agents, has been described in [7]. In [8], the authors introduce a psychology-
based way of “fun” measurement, and evolve game rules for the two-dimensional
Pac-Man-like games using a hill-climbing approach. The goal of the ongoing
project ANGELINA is to generate complete arcade-style 2D games, including
rules, levels, and game characteristics [9]. An initial work towards the game rules
generation for the General Video Game Playing [10] has been presented in [11].

As “fun” is something too difficult to measure, the evaluation of the game’s
quality is restricted usually to its strategic properties. The good game should be
playable, fair, and complex enough to ensure a proper level of challenge. When
considering games for the AI, e.g. for General Game Playing competitions [10,
12], these requirements are mostly sufficient. However, when designing a game
for humans, we should also restrict the rules to be not too complex and, even
more challenging, to be somehow intuitive and easy to learn. In this paper, we
tackle the problem of measuring the complexity of a chess-like game description
from the perspective of a human player.

The descriptions of non-standard chess-like pieces are usually based on the
analogies to well known pieces or movement patterns [13]. We use the similar
approach, first decomposing a given piece into the parts based on the chess
movement classification [14], and then creating the piece’s description in the
natural language and evaluating its complexity. Thus, we call our method the
NLD (Natural Language Description) evaluation.

The algorithm presented in this paper describes and evaluates fairy chess
pieces (i.e belonging to the family of unorthodox chess variants) given as regular
expressions in the Simplified Boardgames standard [15]. Yet, the method can be
generalized to a much larger class of games with the whole variety of features
represented by other chess variants. We use our algorithm to test the quality
of the obtained results on a series of human-made and procedurally generated
pieces. We also apply it to the sets of games evolved for their strategic properties
in [16, 17], to reveal those among them that have an interesting gameplay and
are easy to understand by a human player.

2 Simplified Boardgames

Simplified Boardgames is the class of fairy chess-like games introduced by Björns-
son in [18]. The language describes turn-based, two player, zero-sum chess-like
games on a rectangular board with piece movements described by regular lan-
guages and independent on the move history. It was slightly extended in [19],
and further formalized in [15].

The language can describe many of the fairy chess variants in a concise way,
including games with asymmetry and position-dependent moves (e.g. chess initial
double pawn move). The usage of finite automata for describing pieces’ rules,
and thus for move generation, allows fast and efficient computation of all legal
moves given a board setup. However, it causes some important limitations, e.g.
it is impossible to express actions like castling, en-passant, or promotions.

2.1 Language definition

Here we follow [15] to provide a shortened necessary introduction. The game is
played between the two players, black and white, on a rectangular board of size
width×height. White player is always the first to move.

During a single turn, the player has to make a move using one of his pieces.
Making a move is done by choosing the piece and changing its position according
to the specified movement rule for this piece. At any time, at most one piece can
occupy a square, so finishing the move on a square containing a piece (regardless
of the owner) results in removing it (capturing). No piece addition is possible.
After performing a move, the player gives control to the opponent.

For a given piece, the set of its legal moves is defined as the set of words de-
scribed by a regular expression over an alphabetΣ containing triplets (∆x,∆y, on),
where∆x and∆y are relative column/row distances, and on ∈ {e, p, w} describes
the content of the destination square: e indicates an empty square, p a square
occupied by an opponent piece, and w a square occupied by an own piece. A
positive ∆y means forward for the moving player.

Consider a piece and a word w ∈ Σ∗ that belongs to the language described
by the regular expression in the movement rule for this piece. Let w = a1a2 . . . ak,
where each ai = (∆xi, ∆yi, oni), and suppose that the piece stands on a square
〈x, y〉. Then, w describes a move of the piece, which is applicable in the current
board position if and only if, for every i such that 1 ≤ i ≤ k, the content condition
oni is fulfilled by the content of the square 〈x+

∑i
j=1∆xj , y+

∑i
j=1∆yj〉. The

move of w changes the position of the piece piece from 〈x, y〉 to 〈x+
∑k

i=1∆xi, y+∑k
i=1∆yi〉.
An example of how the move rules work is shown in Figure 1. A partial

codification of simplified version of chess is presented in Figure 2.

2.2 Evolving game rules

In our work, we are using the data obtained from the two experiments concerning
generation of the fairy chess games belonging to the Simplified Boardgames class.

The evolutionary system described in [16] uses an adaptive genetic algorithm
with the fitness function based on the simulated playouts to generate playable
and balanced fairy chess games. The generator is not too restrictive and allows
e.g. asymmetric initial position and terminal conditions. A hand-made evaluation
function analyzes the playout histories and checks for e.g. balance, game tree size,
pieces importance, and, to some extent, complexity of the game rules.

Another approach, described in [17], uses Simplified Boardgames as an ex-
emplary domain to extend and formalize the idea of Relative Algorithm Perfor-
mance Profiles (RAPP) [20]. The games it generates are more constrained and
chess-like: the system always produces fully symmetrical games with one royal
piece, and an initial row of pawn-like pieces. The evaluation function uses a num-
ber of algorithms (player profiles) with various degree of intelligence. To assess
the strategic properties of some generated game, it runs those algorithms against
each other and compare the results with the results obtained on human-made

8 rZkZ0Z0s
7 o0Zna0o0
6 0ZbZ0Z0o
5 ZpZnZpZ0
4 0ZPO0Z0Z
3 Z0ZQZNA0
2 0O0Z0OPO
1 S0Z0Z0J0

a b c d e f g h

Fig. 1. A chess example. Two legal moves for the queen on d3 are shown. The cap-
ture to f5 is codified by the word (1, 1, e)(1, 1, p), while move to a3 is encoded by
(−1, 0, e)(−1, 0, e)(−1, 0, e). The move to f3 is illegal, as in the language of queen’s
moves no move can end on a square containing own’s piece. The d5− f6 knight move
is a direct jump codified by the one-letter word (2, 1, e).

<PIECES> // P - pawn, R - rook, N - knight
P (0,1,e) + (-1,1,p) + (1,1,p) &
R (0,1,e)(0,1,e)^*+(0,1,e)^*(0,1,p)+(0,-1,e)(0,-1,e)^*+(0,-1,e)^*(0,-1,p)+
(1,0,e)(1,0,e)^*+(1,0,e)^*(1,0,p)+(-1,0,e)(-1,0,e)^*+(-1,0,e)^*(-1,0,p)&

N (2,1,e) + (2,-1,e) + ... +(-1,-2,e) + ... + (-1,-2,p) &

Fig. 2. The part of the piece definition section of chess as a Simplified Boardgame.
Moves are represented by the regular expressions (ˆ* being the Kleene star operator).

chess-like games. Based on the RAPP assumption, we expect that all games that
behave similarly to the high quality human-made games will also be good. The
results indeed show that in this way we can obtain playable and balanced games
of high quality, but not necessary with the rules which will be intuitive and easy
to learn by human players.

3 Evaluation Function

Given a set of games assessed for their strategic properties, we would like to
reevaluate them taking into account learnability of their rules. By learnability
we mean the ease to understand and remember how a given game works. As
in Simplified Boardgames terminal conditions are deliberately kept simple, we
will focus on evaluating piece rules. We use the theory of fairy chess movements
[14] to construct a natural language description based on the analogies with the
well-known chess pieces and other easy-to-explain chunks of rules. An additional
benefit of such an approach is that the generated descriptions can be directly
presented to the user in some kind of How to Play guide.

3.1 Fairy chess theory of movements

The term fairy chess is used to describe the unorthodox chess variants common
in chess problems, or, more broadly, the generalization of the chess-like games.
T.R. Dawson’s Theory of Movements formed the basis for the fairy chess move-
ment types, dividing them into: leap, ride, and hop [14]. The Metagame system
is entirely restricted to generate pieces accordingly to this rules [21]. The Sim-
plified Boardgames class is more general, nevertheless – to provide human-like
descriptions – we will refer to this theory.

Let us describe these three types of movements in detail. The leap takes
the piece from one square directly to the other (given the direction vector),
with no regard for intervening squares. For example, the chess knight movement
rules consist of 〈1, 2〉-leap, 〈2, 1〉-leap, 〈−1, 2〉-leap, and so on. We say that a
piece is 〈m,n〉-leaper if it leaps in all possible directions by vectors 〈±m,±n〉
and 〈±n,±m〉. So the knight is a 〈2, 1〉-leaper, and king is the 〈1, 0〉 and 〈1, 1〉-
leaper. Implicitly, leaping to a square means capturing or moving to an empty
square.

Next, the rider can move an unlimited distance in a given direction, provided
there are no pieces in the way, and finish move on an empty square or capture
an opponent piece. It can be seen as an extension of a leaper piece. Examples
of this kind of pieces are rook (〈1, 0〉-rider), bishop (〈1, 1〉-rider) and nightrider
(〈1, 2〉-rider). Again, if no additional restriction are put, we assume riders to
move in all possible directions.

Finally, the hopper is a piece that has to jump over some other piece. Usually
it has to jump over the exactly one piece of any color. There are multiple subtypes
of hoppers, so they have multiple more formal definitions. There are no hoppers
in the standard chess, while in Chinese chess there is a cannon, which captures
like the hopper over the rook lines, and moves like the rook when not capturing.

3.2 Generating descriptions

Our piece decomposition algorithm describes a given piece as a combination of
simpler movement patterns. At the beginning, the regular expression determining
a piece is unfolded into the sum of individual movements. The algorithm uses
a greedy approach to describe all movements starting from the most promising
partial descriptions.

The procedure distinguishes classes and operators. There are two classes: the
leaper and the rider (the latter includes hoppers), each with an associated vector
〈x, y〉. Operators are used to describe proper subsets of moves. A description of a
set of movements consists of a class paired with a sets of operators. For example,
a 〈1, 1〉-rider may be restricted in this way by a single operator forwards.

The initialization phase divides every move into parts based on the common
vector (so e.g., (0, 1, e)∗(0, 1, p)(0, 2, e) consists of two parts). Similar types of vec-
tors are joined in descriptions; for example, (1, 1, e)∗(0, 2, p)+(−1, 1, e)∗(0, 2, p)
results with the description “rides diagonally forward and then captures out-
wards 2 vertically”, which corresponds to the singly-bent riders nomenclature
(see [13] for the details).

In general, for every undescribed yet move m (of the considered piece) , our
algorithm tries to generate its description by using Algorithm 1. It also tries to
include in the same description other moves not described yet, whenever they fit.
Therefore the procedure Algorithm 1 takes two parameters: a move m, and the
list of the undescribed movesM . If this fails (which happens for moves with more
than three parts), a generic procedure is called. It always succeeds by describing
any move as a list of preconditions followed by a destination step. After all piece
moves have been described, the repairing run is launched. It joins descriptions
made by the complementing operators and applies some grammar-fixing rules to
make descriptions sound more naturally.

Let us focus on the main part of the procedure presented in Algorithm 1.
Given the move m and the list of all undescribed moves M , as the candidates to
a common description we leave only those moves in M that consists of the same
number of parts as m (lines 1–4).

We iterate over the piece classes based on the i-th part vector of the move
m, and the predefined lists containing combination of at most 4 operators (lines
8–33). Lists of operators are sorted based on their heuristic score, so checking is
performed in a greedy way. Thus the obtained solution can be suboptimal, but
the speed gain is significant comparing to the usage of e.g. the set cover algo-
rithm. For the performance purposes, the operators lists are filtered to exclude
contradicting cases (e.g. forwards cannot be combined with backwards).

For a chosen class and operators, we compute the set of moves this pair
appoints and its natural language description (line 10). Then, we try to build a
new prefix map H which extends movesByPrefix on the i-th part. This may
happen only if the subset of moves we try to describe is fully included for every
prefix computed so far (lines 11–19).

Then we have to check if H truly describes our particular move m (lines
20–22). If there are more parts to describe, we recursively call function for the
next part. If this succeeds we can merge our descriptions (lines 23–30).

3.3 Evaluating descriptions

Our NLD evaluation function f scores a piece given its partition into a sum of
classes and operators. Let us start defining f with the formula for scoring a single
translating vector 〈x, y〉. The unintuitiveness of a vector is measured as the sum
of the maximum of the absolute values of the coordinates and the distance to
the closest orthogonal or diagonal line. (Thus, 〈2, 0〉 is easier to see and perform
on board than 〈3, 0〉 or 〈2, 1〉).

f(〈x, y〉) = 1 +max(|x|, |y|) + min(dist+(x, y), dist×(x, y)). (1)
Further, we define f for each of the possible operators o. The values for the

operators have been tested manually. Some of the operators are presented in
Table 1.

Each part of a piece is a class combined with a list of operators. The cost of
that component depends on the vector 〈x, y〉 associated with the class and the
costs of the operators:

Algorithm 1 Generating the description of a move m, given a list of all unde-
scribed moves M .
1: function findDescription(M : [Σ∗],m : Σ∗)
2: moves← Moves from M with the same number of parts as m
3: movesByPrefix← {(ε,moves)} . Map from prefixes (parts) to lists of moves
4: return findDescription(m,movesByPrefix, 0)
5: end function
6:
7: function findDescription(m : Σ∗,movesByPrefix : Σ∗ → [Σ∗], i : N)
8: for operators in SortedOperatorSets do
9: for class in PieceClasses do
10: (moves, description)← getMoves(class, operators)
11: H ← {} . Creates empty map
12: for (prefix,M) in movesByPrefix do
13: if moves ⊆ getParts(M, i) then
14: G←Moves from M whose i-th element is in moves
15: H.updateWith(G)
16: else . Wrong choice of operators and class
17: break and continue in line 8
18: end if
19: end for
20: if m is not in some values of H then
21: continue
22: end if
23: if i <numberOfParts(m) then
24: r ← findDescription(m, H, i+1) . Recursive call for the next part
25: if r is Fail then
26: continue
27: else
28: return description “and then” r . Combining part descriptions
29: end if
30: end if
31: return description
32: end for
33: end for
34: return Fail
35: end function

Table 1. Evaluation costs of some operators.

f(o) o

0 none

1 backwards, forwards

2
sideways, only capture, without capture, outwards

max times, min times, not horizontal

3 exactly times, over own piece instead

5 only odd, only even

f(〈x, y〉, [o]) = f(〈x, y〉) · (1 +
∑
i

f(oi)) (2)

If some moves of a piece contain k parts, their score is the product of scores
computed via equation 2. In the case that no class-based formula can be found,
the generic procedure describes the move as a list of its transition vectors, and
scores it as a product of individual vectors’ scores using equation 1. When all
piece movements are resolved and evaluated, the score of a piece is the sum of
the function f applied to all components it consists of.

Finally, to score the entire game, we require the list [p] of pieces, and the
function # counting occurrences of a piece in the initial position. Let k be the
number of defined types of pieces. Then, the NLD game score is calculated as:

f([p]) = (

k∑
i=1

#pi · f(pi))/(
k∑

i=1

#pi) · (10 + k). (3)

The purpose of constant values in the above formulas is to smooth the differ-
ences between various possibilities. For example, the evaluation should benefit
4-pieces games in comparison to 5-pieces games as generally simpler, but the
4:5 relation has been found too severe. The values of the constants have been
tested by analyzing the behavior of evaluation function over the predefined set
of testing pieces and games.

4 Experiments and Results

In this section we describe some results of our experiments. First, we present
descriptions and scores our system proposes for the existing fairy chess pieces
of varying complexity. We also apply our NLD evaluation to the procedurally
generated games from [17] and [16], and analyze the relationship between the
strategic properties and the rules simplicity. In particular, we present an example
of the high-quality, easy-to-learn RAPP-generated game.

4.1 Evaluating pieces

First, we would like to present the descriptions generated by our system for a
few examples of the fairy chess pieces taken from Piececlopedia subpage of [22].

Piece complexities computed by our algorithm are put in parentheses.

– queen (6): Rides in every direction
– short rook (12): Rides max 4 times horizontally or vertically
– lance (4): Rides vertically forward
– centaur (14): Leaps 1 in every direction or over vector (1,2)/(2,1)
– griffon (78): Moves 1 diagonally or moves 1 diagonally and then rides out-

wards vertically or horizontally
– hippogriff (120): Moves 1 diagonally and then rides minimum 2 times out-

wards horizontally or vertically

– duke (60): Rides without capturing diagonally and then leaps outwards 1
vertically or horizontally

– moa (36): Moves 1 diagonally and then leaps outwards 1 vertically or hori-
zontally

– ferz then wazir (12): Moves 1 diagonally and then leaps 1 vertically or hori-
zontally

– buffalo (28): Leaps over vector (3,2)/(2,3) or (3,1)/(1,3) or (1,2)/(2,1)

We would like to point out that procedurally generated pieces are usually
not so well-formed. They may contain various rules for movement, capture, and
even self-capture, combined with artificial conditions both in the sense of the
square content and the relative position. For example we may have a piece that
“captures own forward over vector (5,2)/(2,5) or rides capturing but riding only
over own pieces horizontally or vertically” (complexity 136).

4.2 Evaluating games

Our main goal is to evaluate entire games, especially procedurally generated
ones. We tested the NLD measure on the sets of games produced by the RAPP
evolver [17] and simple simulation-based (SIMB) evolver [16]. Also, we applied
our evaluation to some human-made chess variants. As it is difficult to assign to
the NLD values some standalone interpretation, their meaning for our purpose
remains purely comparative.

First, let us present graphically the correlation between the complexity of
rules and the strategic properties of the generated games, depending on the
generator used. Figure 3 highlights the games belonging to the Pareto front
given two evaluations as parameters. The RAPP chart is trimmed to NLB value
of 3000, and shows 71% of all 2581 games. The Pareto front contains 8 games,
including one game with the RAPP score 0.978 and the NLD score 78557 not
shown on the chart. The SIMB chart is trimmed to NLB value of 2000, and shows
54% of all 8002 games. The Pareto front contains 17 games with the worst NLD
score of 1983. Although the general plot shape is similar, this comparison reveals
some differences in the simplicity of games generated by both approaches.

For comparison, Table 2 presents the NLD scores obtained by existing chess
variants and previously published procedurally generated simplified boardgames.
All game rules had been, if necessary, simplified to fit within the Simplified
Boardgames framework.

An example of a generated and evaluated game is presented in Figure 4. It
is the second highest NLD scored game in the Pareto front from the RAPP-
generated set. It is also the third best game given RAPP evaluation.

Confirming conclusions from [17], strategic evaluation supports setups with
multiple immobile pieces (especially pawns) and only a few mobile pieces with a
real offensive power. This makes the games very positional and, as most of the
moves cannot be reversed, requiring careful ahead planning.

Table 2. NLD Evaluation of example chess-like games.

Game NLD evaluation

shatranj 166

chess 168

CWDA Colorbound Clobberers [23] 196

CWDA Remarkable Rookies [23] 222

CWDA Nutty Knights [23] 248

SIMB 30-P4 [16] 253

tamerlane chess [22] 376

RAPP The Legacy of Ibis [17] 387

5 Conclusion

We have presented a method for generating natural language descriptions for
arbitrary fairy chess pieces given in the Simplified Boardgames language. The
obtained descriptions explain the pieces in a manner similar to the descriptions
provided by the domain experts [13], by referring to the human knowledge,
intuition, and based on the theory of chess movements – which helps to quickly
learn the rules of the game. The goal of creating these descriptions is to explain
the rules of the procedurally generated chess-like games to the human players.
The method can be generalized to include all features represented by other chess
variants, which is the subject of further development.

The presented algorithm can be also used as the evaluation function for the
game generation mechanism, complementing existing approaches that can pro-
duce games preserving high-quality strategic properties, but cannot guarantee
that they will be intuitive and easy to learn.

We have tested our approach on some existing human-made chess-like games
(including standard chess) and two sets of procedurally generated games. We
have discussed correlation between our NLD evaluation and strategic properties
for the generated games, and presented the example of a high-quality and easy-
to-learn procedurally generated game.

References

1. Shaker, N., Togelius, J., Nelson, M.: Procedural Content Generation in Games: A
Textbook and an Overview of Current Research. Springer (2016)

2. Nelson, M.J., Mateas, M.: Towards Automated Game Design. In: AI* IA: Artificial
Intelligence and Human-Oriented Computing. (2007) 626–637

3. Togelius, J., Nelson, M.J., Liapis, A.: Characteristics of Generatable Games. In:
FDG Workshop on Procedural Content Generation. (2014)

4. Zook, A., Riedl, M.O.: Automatic Game Design via Mechanic Generation. In:
AAAI Conference on Artificial Intelligence. (2014) 530–537

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

S
IM

B
 e

v
a
lu

a
ti

o
n

Natural Language Description evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

R
A

P
P
 e

v
a
lu

a
ti

o
n

Natural Language Description evaluation

Fig. 3. Correlation between the NLD evaluation and the strategy properties evaluation:
simple simulation-based [16] on the top, RAPP-based [17] on the bottom. Red nodes
belong to the Pareto front. (The goal is to maximize the strategic evaluation and
minimize the NLD evaluation.)

5. Pell, B.: METAGAME: A New Challenge for Games and Learning. In: Heuristic
Programming in Artificial Intelligence: The Third Computer Olympiad. (1992)

6. Browne, C., Maire, F.: Evolutionary game design. IEEE Transactions on Compu-
tational Intelligence and AI in Games 2(1) (2010) 1–16

7. Font, J.M., Mahlmann, T., Manrique, D., Togelius, J.: Towards the automatic
generation of card games through grammar-guided genetic programming. In: In-
ternational Conference on the Foundations of Digital Games. (2013) 360–363

8. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE
Symposium on Computational Intelligence and Games. (2008) 111–118

9. Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: IEEE
Conference on Computational Intelligence and Games. (2011) 289–296

10. Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M.: General Video
Game AI: Competition, Challenges and Opportunities. In: AAAI Conference on
Artificial Intelligence. (2016) 4335–4337

8�Z$ Z$"Z! Z!
7 Z��Z��Z�Z��
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2�Z��Z�0Z��Z�
1 Z��Z��Z��Z��

a b c d e f g h

� �(16) Moves 1 backwards vertically
Captures 1 forward vertically

� $(18) Leaps 2 forward diagonally
Captures 1 vertically or horizontally

� !(12) Leaps 1 backwards diagonally
Leaps forward over vector (1,2)

� " (8) Leaps 2 forward vertically
Leaps 1 vertically

� (16) Leaps 1 backwards diagonally
Captures 1 horizontally or diagonally

� �(10) Leaps 1 backwards diagonally
Captures 1 diagonally

Fig. 4. Initial position and piece rules for the evolved game with RAPP score 0.971
and NLD score 236 (the numbers in parentheses are the estimated piece complexities).
Winning conditions are to capturing the king (�), reach the opponent’s backrank with
a pawn (�), or make the opponent unable to move. Turnlimit is 209.

11. Nielsen, T.S., Barros, G.A.B., Togelius, J., Nelson, M.J.: Towards generating ar-
cade game rules with VGDL. In: IEEE Conference on Computational Intelligence
and Games. (2015) 185–192

12. Genesereth, M., Thielscher, M.: General Game Playing. Morgan & Claypool (2014)
13. Wikipedia: Fairy chess piece — Wikipedia, The Free Encyclopedia. https://en.

wikipedia.org/wiki/Fairy_chess_piece (Jan. 2017)
14. Dickins, A.: A Guide to Fairy Chess. Dover (1971)
15. Kowalski, J., Sutowicz, J., Szykuła, M.: Simplified Boardgames. arXiv:1606.02645

[cs.AI] (2016)
16. Kowalski, J., Szykuła, M.: Procedural Content Generation for GDL Descriptions

of Simplified Boardgames. arXiv:1108.1494 [cs.AI] (2015)
17. Kowalski, J., Szykuła, M.: Evolving Chesslike Games Using Relative Algorithm

Performance Profiles. In: Applications of Evolutionary Computation. Volume 9597
of LNCS. (2016) 574–589

18. Björnsson, Y.: Learning Rules of Simplified Boardgames by Observing. In: Euro-
pean Conference on Artificial Intelligence. Volume 242 of FAIA. (2012) 175–180

19. Kowalski, J., Kisielewicz, A.: Testing General Game Players Against a Simplified
Boardgames Player Using Temporal-difference Learning. In: IEEE Congress on
Evolutionary Computation. (2015) 1466–1473

20. Nielsen, T.S., Barros, G.A.B., Togelius, J., Nelson, M.J.: General Video Game
Evaluation Using Relative Algorithm Performance Profiles. In: Applications of
Evolutionary Computation. Volume 9028 of LNCS. (2015) 369–380

21. Pell, B.: METAGAME in Symmetric Chess-Like Games. In: Heuristic Program-
ming in Artificial Intelligence: The Third Computer Olympiad. (1992)

22. Duniho, F.: The Chess Variant Pages. http://www.chessvariants.org/ (2016)
23. Wikipedia: Chess with different armies — Wikipedia, The Free Encyclope-

dia. https://en.wikipedia.org/wiki/Chess_with_different_armies (January
2017)

