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Suppose that:

We have a deterministic finite (semi)automaton A = 〈Q,Σ, δ〉.
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We do not know in which state the automaton is left.

Question: is it possible to synchronize the automaton by some word,
so that we will know for sure its current state?
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Greedy compression algorithm
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w = b aab abaaab

Qw =

Word w is a reset word (synchronizing word).

Thus, the automaton A is synchronizing.
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Word w is a reset word (synchronizing word).
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Qw = {3, 4}

Word w is a reset word (synchronizing word).

Thus, the automaton A is synchronizing.
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Computing reset words

Given an n-state automaton, it is easy to check if it is synchronizing and,
if so, find some reset word.
The found reset words can have length O(n3).

The problem of finding a shortest reset word is difficult:

Deciding the existence of a reset word ≤ k is NP-complete
(Eppstein 1990).

Computing the length of the shortest reset words is
FP

NP[log]-complete (Olschewski, Ummels 2010).

No polynomial algorithm exists for approximating the length of the
shortest reset words within a factor of n1−ǫ for any ǫ > 0 (assuming
P 6= NP) (Gawrychowski, Straszak 2015).
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How large can be the length of the shortest reset words of an n-state
synchronizing automaton?

The Černý conjecture (Černý 1969)

Every synchronizing automaton has a reset word of length at most

(n − 1)2

The bound can be met for every n by the Černý automata:
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n − 1

n

1

2

3

. . .

a

b

a

aa

a

a

b

bb

b

Jakub Kowalski, Adam Roman A New Evolutionary Algorithm for Synchronization



The Černý conjecture

proved for various classes of automata:
Oriented, Eulerian, One-cluster, Aperiodic, |Σ| = 2 ∧ |Q| ≤ 12, . . .

general upper bound:

Pin–Frankl, 1983

The length of the shortest reset words is at most

(n3 − n)/6 − 1 (n ≥ 4)

Szyku la, 2017

The length of the shortest reset words is at most

(15617n3 + 7500n2 + 9375n− 31250)/93750 (n ≥ 4)

(coefficient 1/6 at n3 improved by 4/46875).
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Extremal examples: infinite series

Shortest reset words 2-letter automata 3-letter automata

n2 − 2n + 1 = (n − 1)2 Cn (Černý automaton)

. . .

n2 − 3n + 4 D ′

n

n2 − 3n + 3 Wn Fn (odd) Mn

n2 − 3n + 2 D ′′

n En Bn (odd) M ′

n

. . .

n2 − 4n + 7 Gn (odd)

. . . . . .
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Applications

Part orienters;

Finding location on a map/graph;

Resetting biocomputers;

Test generation for sequential circuits;

Model-based testing of reactive systems;

Error corrections of compressed data.
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Algorithm
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Exact algorithms (exponential) finding a shortest reset word

Standard BFS in the power automaton (Hennie 1964);

Using Binary Decision Diagrams (Rho, Somenzi, Pixley 1993);

Semigroup algorithm (Trahtman 2006);

Reduction to SAT (Skvortsov, Tipikin 2011);

Using Answer Sets Programming (Güniçen, Erdem, Yenigün 2013);

The bidirectional algorithm (Kisielewicz, Kowalski, Szyku la 2013).

Inexact algorithms (polynomial) finding a (short) reset word

An algorithm in O(n4) time (Natarajan 1986);

The Eppstein algorithm in O(n3) time (Eppstein 1990);

Semigroup and cycle algorithms (Trahtman 2006);

A genetic algorithm (Roman 2009);

⌈ n−1
p−1

⌉-approximation algorithm in O(pnp + n4/p) time (Gerbush,

Heeringa 2011);

SynchroP and SynchroPL algorithms in O(n5) time, FastSynchro in O(n4) time
(Roman 2005; Kud lacik, Roman, Wagner 2012);

The Cut-Off IBFS algorithm in O(cn4) time (Roman, Szyku la 2015).
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Genetic Algorithm (Roman 2009)

SynchroGA

chromosomes are various length words over the Σ;

probability distribution of letters based on the construction of
automaton;

probabilities of mutation and crossover increasing when in
stagnation;

one-point crossover;

three types of mutations: letter flip, insert random subword, delete
random subword;

fitness function:

f (w) =
(|Q| − |Qw |)4

4
√

|w |
.
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Knowledge-based approach

Rank-based model

Instead of returning only rk(w) = |Qw | (the word’s rank), the evaluation
process returns the rank of every prefix of w , forming a vector
r1, r2, . . . , r|w|.

this enhancement do not increase the complexity of evaluation;

it allows to trivially improve words w such that rk(w) = 1, w = vx
and rk(v) = 1.

FI-2POP (Kimbrough, et al. 2008)

Keep separate populations for best of feasible and infeasible individuals.

Feasible population (synchronizing words):

minimize the length of the word

Infeasible population (non-synchronizing words):

minimize the rank of the word
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Operators

Initialization

We generate twice the size of the population random words.

uniform(l) ( 1
|Σ|)

rank-based(l) (|Qa|)

reverse-rank-based(l) (|Q| − |Qa| + 1)

Selection

tournament(s)

uniform (tournament(1))

Replication

Best of childern and parents for both feasible and infeasible population.
Keep both populations equal.
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Operators

Crossover

We introduce rank-based operators as operating on compressing words
instead of single letters.

one-point and rank-based one-point;

two-point and rank-based two-point;

uniform and rank-based uniform;

Mutation

Most designed operators aim to the specific population.

(IF/FI) letter-exchange(p)

(IF) letter-insertion(p) / adaptive letter-insertion(p)

(IF) lastwords(p)

(IF) compressing-word-insertion(p)

(FI) letter-deletion(p) / adaptive letter-deletion(p)
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Experiments and Results
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Experiments

1 Selecting the best settings for operators

random automata: |Σ| = 2, n ∈ {25, 50, 75, 100};
|Σ| ∈ {3, 4}, n ∈ {25, 50, 75};
population size: 30+30; maximum generations: 500;
hill-climbing search for settings improvement (> 110 tested).

2 Extremal automata and comparison with SynchroGA

Extremal series of automata: B,C ,D
′
,D

′′
,E ,F ,G ,H,W ;

n ∈ {11, 21, 31, 41, 51, 61};
population size: 20+20 / 40; maximum generations: 1000.

3 Large random automata

binary automata with n ∈ {100, 200, 300, 400, 500, 600};
population size: 30+30; maximum generations: 500;
Eppstein and Cut-Off IBFS algorithms for comparison.
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Operators selection

% avg. Ratio: LSW /: Operators
MLSW gen. MLSW EPPLSW Init CFI CIF MFI MIF

75.68 87.54 1.0233 0.6880 rb(1.0) 1pL 2pRB ald(0.065) lw
75.67 86.19 1.0229 0.6878 uni(2.0) 1pL 2pRB ald(0.065) lw
75.52 86.14 1.0231 0.6879 uni(2.5) 1pL 2pRB ald(0.065) lw
75.50 87.14 1.0232 0.6880 rb(2.0) 1pL 2pRB ald(0.065) lw
75.50 85.76 1.0231 0.6879 uni(1.0) 1pL 2pRB ald(0.065) lw
75.46 84.41 1.0234 0.6881 uni(1.0) 1pL 2pRB ald(0.050) lw
75.45 86.71 1.0231 0.6879 rb(0.5) 1pL 2pRB ald(0.065) lw
75.36 87.60 1.0231 0.6880 uni(1.0) 1pL 2pRB ald(0.080) lw
75.36 85.81 1.0232 0.6880 uni(1.5) 1pL 2pRB ald(0.065) lw
75.27 84.76 1.0233 0.6880 uni(0.5) 1pL 2pRB ald(0.065) lw
75.16 83.55 1.0239 0.6884 uni(1.0) 1pL 2pRB ald(0.040) lw
75.06 85.41 1.0234 0.6881 rrb(2.0) 1pL 2pRB ald(0.065) lw
75.03 85.17 1.0234 0.6882 rrb(1.0) 1pL 2pRB ald(0.065) lw
74.93 88.96 1.0236 0.6883 uni(2.0) 2pRB 2pRB ald(0.065) lw
74.87 89.11 1.0236 0.6883 uni(1.0) 2pRB 2pRB ald(0.065) lw
74.87 90.50 1.0239 0.6884 rb(1.0) 2pRB 2pRB ald(0.065) lw
74.82 90.25 1.0239 0.6884 rb(2.0) 2pRB 2pRB ald(0.065) lw
74.82 91.39 1.0237 0.6883 uni(1.0) 2pRB 2pRB ald(0.080) lw
74.79 88.85 1.0249 0.6891 uni(1.5) 1pL 1pRB ald(0.065) cwi
74.78 88.85 1.0249 0.6891 uni(1.0) 1pL 1pRB ald(0.065) cwi

. . . 52:
73.75 97.08 1.0260 0.6898 uni(1.0) 1pL 1pL ald(0.065) ali(0.04)
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Extremal automata – synchronizing word lenghts
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Extremal automata – rank comparison

A best rk mean rk A best rk mean rk
SGA2 SGA SGA2 SGA SGA2 SGA SGA2 SGA

B11 1 1 1.45 1 C11 1 1 1 1
B21 1 1 1.05 1 C21 1 1 1 1
B31 1 1 1 1.90 C31 1 2 1 2.35
B41 1 2 1 2.75 C41 1 4 1 5.30
B51 1 - 1 - C51 1 - 1 -
B61 1 - 1 - C61 1 - 1 -
D′

11 1 1 1.05 1 D′′

11 1 1 1.45 1
D′

21 1 1 1 1 D′′

21 1 1 1.05 1
D′

31 1 1 1 1.1 D′′

31 1 1 1 1.35
D′

41 1 1 1 1.9 D′′

41 1 2 1 2
D′

51 1 - 1 - D′′

51 1 - 1 -
D′

61 1 - 1 - D′′

61 1 - 1 -
G11 1 1 1.05 1 W11 1 1 1 1
G21 1 1 1 1 W21 1 1 1 1
G31 1 1 1 1.1 W31 1 1 1 1.1
G41 1 1 1 2 W41 1 1 1 1.75
G51 1 - 1 - W51 1 - 1 -
G61 1 - 1 - W61 1 - 1 -
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Large random automata
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Mean length of the found synchronizing word
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Thank you
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