A New Evolutionary Algorithm for Synchronization

Jakub Kowalski, Adam Roman

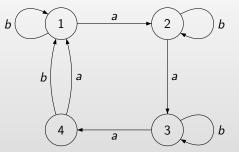
University of Wrocław, Poland

EvoApplications

21.04.2017

Suppose that:

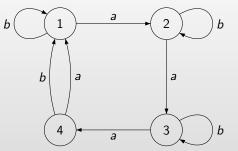
• We have a deterministic finite (semi)automaton $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$.



- We do not know in which state the automaton is left.
- Question: is it possible to synchronize the automaton by some word, so that we will know for sure its current state?

Suppose that:

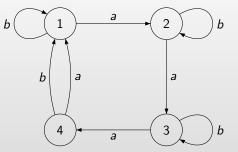
• We have a deterministic finite (semi)automaton $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$.



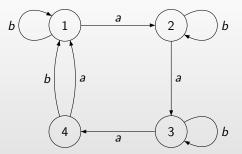
- We do not know in which state the automaton is left.
- Question: is it possible to synchronize the automaton by some word, so that we will know for sure its current state?

Suppose that:

• We have a deterministic finite (semi)automaton $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$.

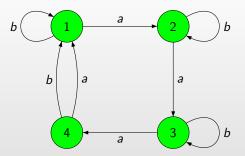


- We do not know in which state the automaton is left.
- Question: is it possible to synchronize the automaton by some word, so that we will know for sure its current state?



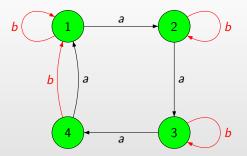
w = b aab abaaabQw =

Word w is a reset word (synchronizing word).



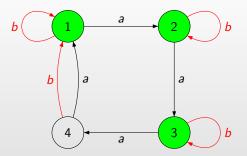
w = b aab abaaabQw =

Word w is a reset word (synchronizing word).



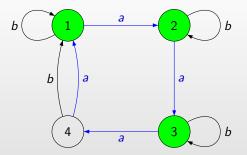
w = b aab abaaab $Qw = \{1, 2, 3, 4\}$

Word w is a reset word (synchronizing word).



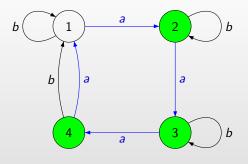
w = b aab abaaab $Qw = \{1, 2, 3\}$

Word w is a reset word (synchronizing word).



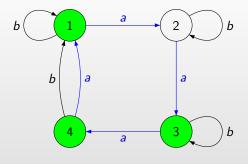
w = b aab abaaab $Qw = \{1, 2, 3\}$

Word w is a reset word (synchronizing word).



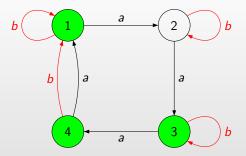
w = b ab abaaab $Qw = \{2, 3, 4\}$

Word w is a reset word (synchronizing word).



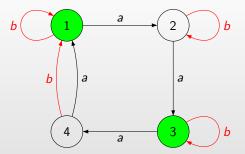
w = b aab abaaab $Qw = \{1, 3, 4\}$

Word w is a reset word (synchronizing word).



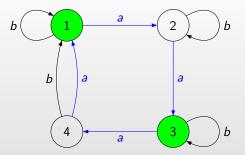
w = b aab abaaab $Qw = \{1, 3, 4\}$

Word w is a reset word (synchronizing word).



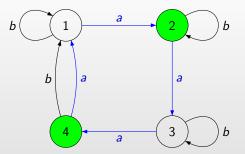
w=b aab abaaab $Qw=\{1,3\}$

Word w is a reset word (synchronizing word).



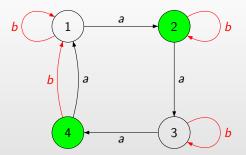
w=b aab abaaab $Qw=\{1,3\}$

Word w is a reset word (synchronizing word).



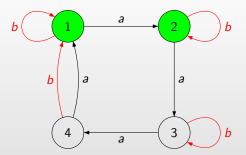
w = b aab abaaab $Qw = \{2, 4\}$

Word w is a reset word (synchronizing word).



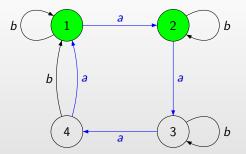
w = b aab abaaab $Qw = \{2, 4\}$

Word w is a reset word (synchronizing word).



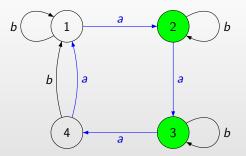
w = b aab abaaab $Qw = \{1, 2\}$

Word w is a reset word (synchronizing word).



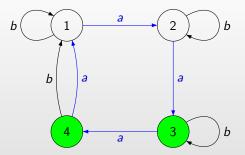
w=b aab abaaab $Qw=\{1,2\}$

Word w is a reset word (synchronizing word).



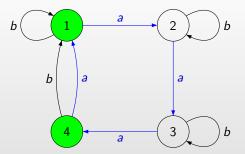
w = b aab abaaab $Qw = \{2,3\}$

Word w is a reset word (synchronizing word).



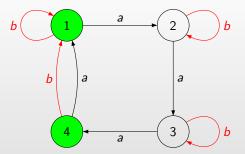
w = b aab abaaab $Qw = \{3, 4\}$

Word w is a reset word (synchronizing word).



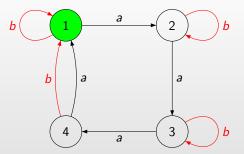
w = b aab abaaab $Qw = \{1, 4\}$

Word w is a reset word (synchronizing word).



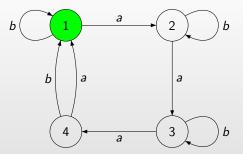
w=b aab abaaab $Qw=\{1,4\}$

Word w is a reset word (synchronizing word).



w = b aab abaaab $Qw = \{1\}$

Word w is a reset word (synchronizing word).



w=b aab abaaab $Qw=\{1\}$

Word w is a reset word (synchronizing word). Thus, the automaton \mathscr{A} is synchronizing. Given an *n*-state automaton, it is easy to check if it is synchronizing and, if so, find some reset word. The found reset words can have length $O(n^3)$.

The problem of finding a shortest reset word is difficult:

- Deciding the existence of a reset word ≤ k is NP-complete (Eppstein 1990).
- Computing the length of the shortest reset words is $FP^{NP[log]}$ -complete (Olschewski, Ummels 2010).
- No polynomial algorithm exists for approximating the length of the shortest reset words within a factor of n^{1−ϵ} for any ϵ > 0 (assuming P ≠ NP) (Gawrychowski, Straszak 2015).

Given an *n*-state automaton, it is easy to check if it is synchronizing and, if so, find some reset word.

The found reset words can have length $O(n^3)$.

The problem of finding a shortest reset word is difficult:

- Deciding the existence of a reset word ≤ k is NP-complete (Eppstein 1990).
- Computing the length of the shortest reset words is $FP^{NP[log]}$ -complete (Olschewski, Ummels 2010).
- No polynomial algorithm exists for approximating the length of the shortest reset words within a factor of n^{1−ϵ} for any ϵ > 0 (assuming P ≠ NP) (Gawrychowski, Straszak 2015).

How large can be the length of the *shortest* reset words of an *n*-state synchronizing automaton?

The Černý conjecture (Černý 1969)

Every synchronizing automaton has a reset word of length at most

$$(n-1)^2$$

The bound can be met for every *n* by the Černý automata:

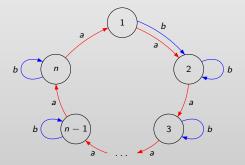
How large can be the length of the *shortest* reset words of an *n*-state synchronizing automaton?

The Černý conjecture (Černý 1969)

Every synchronizing automaton has a reset word of length at most

$$(n-1)^2$$

The bound can be met for every *n* by the Černý automata:



The Černý conjecture

- proved for various classes of automata: Oriented, Eulerian, One-cluster, Aperiodic, $|\Sigma| = 2 \land |Q| \le 12, \ldots$
- general upper bound:

Pin-Frankl, 1983

The length of the shortest reset words is at most

$$(n^3 - n)/6 - 1$$
 (n ≥ 4)

Szykuła, 2017

The length of the shortest reset words is at most

 $(15617n^3 + 7500n^2 + 9375n - 31250)/93750 \qquad (n \ge 4)$

(coefficient 1/6 at n^3 improved by 4/46875).

- proved for various classes of automata: Oriented, Eulerian, One-cluster, Aperiodic, $|\Sigma| = 2 \land |Q| \le 12, \ldots$
- general upper bound:

Pin-Frankl, 1983

The length of the shortest reset words is at most

$$(n^3 - n)/6 - 1$$
 (n ≥ 4)

Szykuła, 2017

The length of the shortest reset words is at most

 $(15617n^3 + 7500n^2 + 9375n - 31250)/93750 \qquad (n \ge 4)$

(coefficient 1/6 at n^3 improved by 4/46875).

- proved for various classes of automata: Oriented, Eulerian, One-cluster, Aperiodic, $|\Sigma| = 2 \land |Q| \le 12, \ldots$
- general upper bound:

Pin-Frankl, 1983

The length of the shortest reset words is at most

$$(n^3 - n)/6 - 1$$
 (n ≥ 4)

Szykuła, 2017

The length of the shortest reset words is at most

$$(15617n^3 + 7500n^2 + 9375n - 31250)/93750$$
 (n \geq 4)

(coefficient 1/6 at n^3 improved by 4/46875).

Extremal examples: infinite series

Shortest reset words	2-letter automata	3-letter automata
$n^2 - 2n + 1 = (n - 1)^2$	\mathscr{C}_n (Černý automaton)	
$n^2 - 3n + 4$	\mathscr{D}'_{n}	
$n^2 - 3n + 3$	₩n ℱn (odd)	Mn
$n^2 - 3n + 2$	$\mathscr{D}_n^{\prime\prime} \mathscr{E}_n \mathscr{B}_{n \ (odd)}$	\mathcal{M}'_n
$n^2 - 4n + 7$	$\mathscr{G}_{n \text{ (odd)}}$	

- Part orienters;
- Finding location on a map/graph;
- Resetting biocomputers;
- Test generation for sequential circuits;
- Model-based testing of reactive systems;
- Error corrections of compressed data.

Algorithm

Exact algorithms (exponential) finding a shortest reset word

- Standard BFS in the power automaton (Hennie 1964);
- Using Binary Decision Diagrams (Rho, Somenzi, Pixley 1993);
- Semigroup algorithm (Trahtman 2006);
- Reduction to SAT (Skvortsov, Tipikin 2011);
- Using Answer Sets Programming (Güniçen, Erdem, Yenigün 2013);
- The bidirectional algorithm (Kisielewicz, Kowalski, Szykuła 2013).

Inexact algorithms (polynomial) finding a (short) reset word

- An algorithm in $O(n^4)$ time (Natarajan 1986);
- The Eppstein algorithm in $O(n^3)$ time (Eppstein 1990);
- Semigroup and cycle algorithms (Trahtman 2006);
- A genetic algorithm (Roman 2009);
- $\lceil \frac{n-1}{p-1} \rceil$ -approximation algorithm in $O(pn^p + n^4/p)$ time (Gerbush, Heeringa 2011);
- SynchroP and SynchroPL algorithms in $O(n^5)$ time, FastSynchro in $O(n^4)$ time (Roman 2005; Kudłacik, Roman, Wagner 2012);
- The Cut-Off IBFS algorithm in $O(cn^4)$ time (Roman, Szykuła 2015).

Exact algorithms (exponential) finding a shortest reset word

- Standard BFS in the power automaton (Hennie 1964);
- Using Binary Decision Diagrams (Rho, Somenzi, Pixley 1993);
- Semigroup algorithm (Trahtman 2006);
- Reduction to SAT (Skvortsov, Tipikin 2011);
- Using Answer Sets Programming (Güniçen, Erdem, Yenigün 2013);
- The bidirectional algorithm (Kisielewicz, Kowalski, Szykuła 2013).

Inexact algorithms (polynomial) finding a (short) reset word

- An algorithm in $O(n^4)$ time (Natarajan 1986);
- The Eppstein algorithm in $O(n^3)$ time (Eppstein 1990);
- Semigroup and cycle algorithms (Trahtman 2006);
- A genetic algorithm (Roman 2009);
- $\lceil \frac{n-1}{p-1} \rceil$ -approximation algorithm in $O(pn^p + n^4/p)$ time (Gerbush, Heeringa 2011);
- SynchroP and SynchroPL algorithms in $O(n^5)$ time, FastSynchro in $O(n^4)$ time (Roman 2005; Kudłacik, Roman, Wagner 2012);
- The Cut-Off IBFS algorithm in $O(cn^4)$ time (Roman, Szykuła 2015).

Genetic Algorithm (Roman 2009)

SynchroGA

- chromosomes are various length words over the Σ ;
- probability distribution of letters based on the construction of automaton;
- probabilities of mutation and crossover increasing when in stagnation;
- one-point crossover;
- three types of mutations: letter flip, insert random subword, delete random subword;
- fitness function:

$$f(w) = \frac{(|Q| - |Qw|)^4}{\sqrt[4]{|w|}}$$

Rank-based model

Instead of returning only rk(w) = |Qw| (the word's rank), the evaluation process returns the rank of every prefix of w, forming a vector

 $r_1, r_2, \ldots, r_{|w|}.$

- this enhancement do not increase the complexity of evaluation;
- it allows to trivially improve words w such that rk(w) = 1, w = vx and rk(v) = 1.

FI-2POP (Kimbrough, et al. 2008)

Keep separate populations for best of feasible and infeasible individuals.

• Feasible population (synchronizing words):

minimize the length of the word

 Infeasible population (non-synchronizing words): minimize the rank of the word

Rank-based model

Instead of returning only rk(w) = |Qw| (the word's rank), the evaluation process returns the rank of every prefix of w, forming a vector $r_1, r_2, \ldots, r_{|w|}$.

- this enhancement do not increase the complexity of evaluation;
- it allows to trivially improve words w such that rk(w) = 1, w = vx and rk(v) = 1.

FI-2POP (Kimbrough, et al. 2008)

Keep separate populations for best of feasible and infeasible individuals.

• Feasible population (synchronizing words):

minimize the length of the word

• Infeasible population (non-synchronizing words):

minimize the rank of the word

Initialization

We generate twice the size of the population random words.

- uniform(l) $(\frac{1}{|\Sigma|})$
- rank-based(l) (|Qa|)
- reverse-rank-based(l) (|Q| |Qa| + 1)

Selection

- tournament(s)
- uniform (tournament(1))

Replication

Best of childern and parents for both feasible and infeasible population. Keep both populations equal.

Initialization

We generate twice the size of the population random words.

- uniform(l) $(\frac{1}{|\Sigma|})$
- rank-based(l) (|Qa|)
- reverse-rank-based(l) (|Q| |Qa| + 1)

Selection

- tournament(s)
- **uniform** (tournament(1))

Replication

Best of childern and parents for both feasible and infeasible population. Keep both populations equal.

Initialization

We generate twice the size of the population random words.

- uniform(l) $(\frac{1}{|\Sigma|})$
- rank-based(l) (|Qa|)
- reverse-rank-based(l) (|Q| |Qa| + 1)

Selection

- tournament(s)
- **uniform** (tournament(1))

Replication

Best of childern and parents for both feasible and infeasible population. Keep both populations equal.

Crossover

We introduce *rank-based* operators as operating on compressing words instead of single letters.

- one-point and rank-based one-point;
- two-point and rank-based two-point;
- uniform and rank-based uniform;

Mutation

Most designed operators aim to the specific population.

- (IF/FI) letter-exchange(p)
- (IF) letter-insertion(p) / adaptive letter-insertion(p)
- (IF) lastwords(p)
- (IF) compressing-word-insertion(p)
- (FI) letter-deletion(p) / adaptive letter-deletion(p)

Crossover

We introduce *rank-based* operators as operating on compressing words instead of single letters.

- one-point and rank-based one-point;
- two-point and rank-based two-point;
- uniform and rank-based uniform;

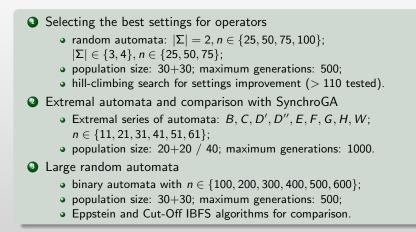
Mutation

Most designed operators aim to the specific population.

- (IF/FI) *letter-exchange(p)*
- (IF) letter-insertion(p) / adaptive letter-insertion(p)
- (IF) *lastwords(p)*
- (IF) compressing-word-insertion(p)
- (FI) letter-deletion(p) / adaptive letter-deletion(p)

EXPERIMENTS AND RESULTS

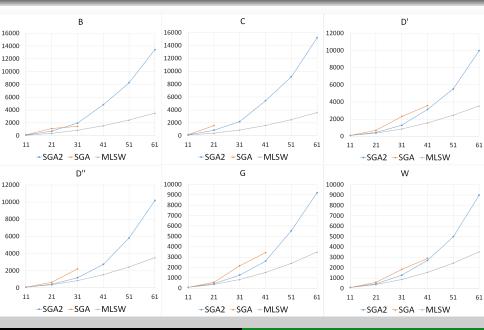
Experiments



Operators selection

%	avg.	Ratio: LSW /:		Operators						
MLSW	gen.	MLSW	EPPLSW	Init	C_{FI}	C_{IF}	M _{FI}	MIF		
75.68	87.54	1.0233	0.6880	rb(1.0)	1pL	2pRB	ald(0.065)	lw		
75.67	86.19	1.0229	0.6878	uni(2.0)	1pL	2pRB	ald(0.065)	lw		
75.52	86.14	1.0231	0.6879	uni(2.5)	1pL	2pRB	ald(0.065)	lw		
75.50	87.14	1.0232	0.6880	rb(2.0)	1pL	2pRB	ald(0.065)	lw		
75.50	85.76	1.0231	0.6879	uni(1.0)	1pL	2pRB	ald(0.065)	lw		
75.46	84.41	1.0234	0.6881	uni(1.0)	1pL	2pRB	ald(0.050)	lw		
75.45	86.71	1.0231	0.6879	rb(0.5)	1pL	2pRB	ald(0.065)	lw		
75.36	87.60	1.0231	0.6880	uni(1.0)	1pL	2pRB	ald(0.080)	lw		
75.36	85.81	1.0232	0.6880	uni(1.5)	1pL	2pRB	ald(0.065)	lw		
75.27	84.76	1.0233	0.6880	uni(0.5)	1pL	2pRB	ald(0.065)	lw		
75.16	83.55	1.0239	0.6884	uni(1.0)	1pL	2pRB	ald(0.040)	lw		
75.06	85.41	1.0234	0.6881	rrb(2.0)	1pL	2pRB	ald(0.065)	lw		
75.03	85.17	1.0234	0.6882	rrb(1.0)	1pL	2pRB	ald(0.065)	lw		
74.93	88.96	1.0236	0.6883	uni(2.0)	2pRB	2pRB	ald(0.065)	lw		
74.87	89.11	1.0236	0.6883	uni(1.0)	2pRB	2pRB	ald(0.065)	lw		
74.87	90.50	1.0239	0.6884	rb(1.0)	2pRB	2pRB	ald(0.065)	lw		
74.82	90.25	1.0239	0.6884	rb(2.0)	2pRB	2pRB	ald(0.065)	lw		
74.82	91.39	1.0237	0.6883	uni(1.0)	2pRB	2pRB	ald(0.080)	lw		
74.79	88.85	1.0249	0.6891	uni(1.5)	1pL	1pRB	ald(0.065)	cwi		
74.78	88.85	1.0249	0.6891	uni(1.0)	1pL	1pRB	ald(0.065)	cwi		
52:										
73.75	97.08	1.0260	0.6898	uni(1.0)	1pL	1pL	ald(0.065)	ali(0.04)		
Jakub Kowalski, Adam Roman A New Evolutionary Algorithm for Synchronization										

Extremal automata – synchronizing word lenghts

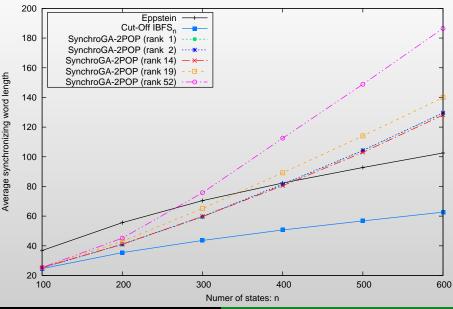


Extremal automata - rank comparison

\mathcal{A}	best rk		mean rk		\mathcal{A}	best rk		mean rk	
	SGA2	SGA	SGA2	SGA		SGA2	SGA	SGA2	SGA
B ₁₁	1	1	1.45	1	<i>C</i> ₁₁	1	1	1	1
B ₂₁	1	1	1.05	1	C ₂₁	1	1	1	1
B_{31}	1	1	1	1.90	C ₃₁	1	2	1	2.35
B_{41}	1	2	1	2.75	C_{41}	1	4	1	5.30
B_{51}	1	-	1	-	C ₅₁	1	-	1	-
B_{61}	1	-	1	-	C ₆₁	1	-	1	-
D'_{11}	1	1	1.05	1	D_{11}''	1	1	1.45	1
D_{21}^{7}	1	1	1	1	D_{21}''	1	1	1.05	1
$ \begin{array}{c} D_{21}^{11} \\ D_{31}^{11} \\ D_{41}^{11} \end{array} $	1	1	1	1.1	D_{31}^{77} D_{41}^{77}	1	1	1	1.35
D_{41}^{7-}	1	1	1	1.9	D_{41}^{77}	1	2	1	2
D'_{51}	1	-	1	-	$D_{51}^{''}$	1	-	1	-
D'_{61}	1	-	1	-	$D_{51}^{\prime\prime} \ D_{61}^{\prime\prime}$	1	-	1	-
G ₁₁	1	1	1.05	1	W_{11}	1	1	1	1
G ₂₁	1	1	1	1	W_{21}	1	1	1	1
G ₃₁	1	1	1	1.1	W_{31}	1	1	1	1.1
G ₄₁	1	1	1	2	W_{41}	1	1	1	1.75
G_{51}	1	-	1	-	W_{51}	1	-	1	-
G ₆₁	1	-	1	-	W_{61}	1	-	1	-

Large random automata

Mean length of the found synchronizing word



Jakub Kowalski, Adam Roman A New Evolutionary Algorithm for Synchronization

THANK YOU