PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	000000000000	00

Evolving Chess-like Games Using Relative Algorithm Performance Profiles

Jakub Kowalski, Marek Szykuła

EvoApplications

31 March 2016

Jakub Kowalski, Marek Szykuła Evolving Chess-like Games Using Relative Algorithm Performance Profiles

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
•	00000	0000	000000000000	00

Procedural Content Generation

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
•	00000	0000	00000000000	00

Procedural Content Generation of complete games

Task

• Generate complete rules of high quality games

Applications

- Games for humans
- Games for AI (competitions)

Problems

- Game rules are usually complex
- How to measure quality of a game?

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	000000000000	00

Relative Algorithm Performance Profiles

Jakub Kowalski, Marek Szykuła Evolving Chess-like Games Using Relative Algorithm Performance Profiles

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	0000	0000	00000000000	00

RAPP (Nielsen et al. 2015)

Idea

In good games, better algorithms should play better than worse algorithms.

Application

Evaluate game quality by comparing performance of different algorithms.

Jakub Kowalski, Marek Szykuła Evolving Chess-like Games Using Relative Algorithm Performance Profiles

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	0000	0000	00000000000	00

RAPP (Nielsen et al. 2015)

ldea

In good games, better algorithms should play better than worse algorithms.

Application

Evaluate game quality by comparing performance of different algorithms.

GVG-AI tests

- Atari-like games (VGDL)
- Simulation-based framework (Java)
- Real-time responses.
- One player games only (puzzles).

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
0	00000	0000	000000000000	00

Research (Nielsen et al., EvoGAMES 2015)

Jakub Kowalski, Marek Szykuła Evolving Chess-like Games Using Relative Algorithm Performance Profiles

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
0	00000	0000	00000000000	00

Research, cont. (Nielsen et al., IEEE CIG 2015)

Evolution

- Based on two controllers: DeepSearch and DoNothing
- Fitness function:

$$\frac{RD(score) + RD(wins) + win_50 + win_lose}{4},$$
where:

- RD means relative difference
- win_50 is -1 if win in fewer than 50 frames
- win_lose is 1 if the game can be both won and lost

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	000000000000	00

RAPP extension

- Generalization of RAPP;
- Formalization of the method;
- Application for two player, zero-sum games;
- Generation and evolution tests.

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	000	000000000000	00

SIMPLIFIED BOARDGAMES

Jakub Kowalski, Marek Szykuła Evolving Chess-like Games Using Relative Algorithm Performance Profiles

< 同 > < 三 > < 三 >

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
		0000		
Definition				

Simplified Boardgames (Björnsson, ECAI 2012)

- Turn based; two players; zero-sum games;
- Rectangular board; fixed initial position; max one piece per square;
- One piece movement per turn;
- Capturing only at destination square;
- Winning conditions:
 - reaching a goal square using a certain piece,
 - captured some number of opponent's pieces;
- Draw occurs when the preset maximum game length is reached.

Set of piece's move rules

Regular language over an alphabet Σ containing triplets ($\Delta x, \Delta y, on$):

- Δx , Δy are relative column/row distances;
- $on \in \{e, p, w\}$ describes the content of the destination square:
 - e empty square,
 - p square occupied by an opponent piece,
 - w square occupied by an own piece.

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	000000000000	
Examples				
Move e	examples			

- $ag{d3-a3:} (-1,0,e)(-1,0,e)(-1,0,e)$
- [₩]d3-f5: (1,1,e)(1,1,p)
- ▲d5-f6: (2, 1, e)
- 營d3-f3: (1,0,*e*)(1,0,*w*)

*Deep Blue vs Garry Kasparov, 1997, Game 6, Move 19 (last) 🗇 🛛 🛪 🖘 👘 🛬 🔗 🛇

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
		0000		
Examples				

Simplified Chess example

<board></board>	<goals></goals>
8 8	200 &
rnbqkbnr	@P 0 7, 1 7, 2 7, 3 7, 4 7, 5 7, 6 7, 7 7 &
рррррррр	@p 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0 &
	#K 1 &
	#k 1 &
PPPPPPPP	
RNBQKBNR	
<pieces></pieces>	
P (0,1,e) + (-1	,1,p) + (1,1,p) +
(0,1,e)(0,5,e	e)(0,-4,e) + &
N (2,1,e) + (2,	-1,e) + (-2,1,e) + (-2,-1,e) + (1,2,e) &
R (0,1,e)^* + ((0,1,e)^*(0,1,p) + (0,-1,e)^* + &

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	00000000000	00

GENERALIZED RAPP

Jakub Kowalski, Marek Szykuła Evolving Chess-like Games Using Relative Algorithm Performance Profiles

(人間) トイヨト イヨト

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	000000000000000000000000000000000000000	
Method				
Model	selection			

- Defining the set of example games
- Optiming the set of example algorithms (player profiles)
- (Selecting model games)
- Selecting evaluation algorithms
- Generation and evolution

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	0000000000000	
Method				

Example sets

Example games

- Gardner,
- Action Man's Chess,
- Petty Chess,
- Half Chess,
- Demi-chess,
- Los Alamos Chess,
- Cannons and Crabs,
- Small-Deacon Chess,
- Shatranj,
- Chess.

Example algorithms (heuristic functions)

- Constant/Weighted
- \bullet + **M**obility
- + Control
- \bullet + Goal

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
			00000000000	
Method				

Average score of algorithms

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	00000000000	
Model				

Extracting model

Model games

Division into two sets with minimal sum of distances

$$\operatorname{dist}(\mathcal{G},\mathcal{H}) = \frac{\sum_{i=1}^{n} \sum_{j=i+1}^{n} (P_{\mathcal{G}}[i,j] - P_{\mathcal{H}}[i,j])^{2}}{n(n-1)/2}.$$
 (1)

Result: Action Man's Chess, Cannons And Crabs, Chess, Los Alamos, Shatranj, Small-Deacon.

Model algorithms

Take k algorithms which maximize spread

spread(
$$P_{model}$$
) = $\sum_{i=1}^{k} \sum_{j=i+1}^{k} |P_{model}[i,j] - 0.5|^2$. (2)

Result (k = 3): CG, WGC, WGCM Result (k = 4): C, CG, WGM, WGC Result (k = 5): C, CG, WGM, WGC, WGCM.

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	00000000000	00
Model				
Repres	sentation gra	aph of the relativ	e performance mo	odels

イロト イボト イヨト イヨト

э

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	00000 00 00000	
Evolution				
Genera	ation			

Restrictions (chess-like games)

- Symmetric initial position
- Two rows of pieces per player.
- Front row contains only pawns (or empty squares)
- Back row contain one piece of the king type.
- Win by capturing the enemy king.
- Win by reaching the opponent's back row using a pawn.

Parameters

- Board width, height $\in \{6, 7, 8\}$,
- Number of *non-winning* figures $\in \{3, 4, 5\}$.
- $turnlimit = 3 \times width \times height + random(\{0, \dots, 19\}).$

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
Evoluti	on	0000		00
Fit	ness function			
	Features			
	• $B = \frac{ score_w - score_w }{n}$	^{₅]} is a <i>balance</i> , where		
	 n is the num 	iber of plays,		
	 score_w be the 	e percent of points score	ed by white player,	
	 score_b be th 	e percent of points score	d by black player.	
	• $Q = \frac{s}{n}$ is a gam	e's <i>quickness</i> , where		
	 game is too 	short if it ends in 10 tur	ns,	
	s plays were	qualified as too short.		

• D is distance to the model using modified formula (1),

$$\operatorname{dist}(\mathcal{G}, P_{model}) = \frac{\sum_{i=1}^{n} \sum_{j=i+1}^{n} (|P_{\mathcal{G}}[i, j] - P_{\mathcal{H}}[i, j]|)^{1}}{n(n-1)/2}.$$
 (1a)

Fitness value

$$f = \begin{cases} (1-D)(1-B)(1-Q) & \text{if game is playable,} \\ -1 & \text{otherwise.} \end{cases}$$

(3)

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
			000000000000	
Evolution				

Genetic operators

Crossover

- Roulette wheel parents selection
- Uniform crossover (except king squares)

Mutation

- Piece mutation regenerates the rules of a random piece.
- Position mutation changes the content of a random square.

Selection

• Best *n* games from parents and children sets.

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	000000000000000000000000000000000000000	
Experiments				

Experiment setup

Generation

- 4 parameter sets (for piece rules generation);
- 200 generated games (50 per set);
- evaluated using 3 and 4 model algorithms.

Evolution

- same 4 parameter sets;
- 20 generations;
- 3 and 4 model algorithms: 12 runs with population size 10;
- 4 algorithms: 12 runs, population size 16, increased mutation rate.

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	00000000000000	
Experiments				

Evolution results

3 algs.; population size 12

4 algs.; population size 16

Jakub Kowalski, Marek Szykuła

Evolving Chess-like Games Using Relative Algorithm Performance Profiles

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	000000000000000000000000000000000000000	
Experiments				

Results comparison

Variant	3 algs.			4 algs.		
	Max.	Avg.	Promising	Max.	Avg.	Promising
Generated	0.907	0.671	29%	0.942	0.704	34%
Evolved(12)	0.971	0.911	100%	0.959	0.916	100%
Evolved(16)				0.978	0.922	100%
Example	0.858	0.811	90%	0.959	0.859	100%

 $\exists \rightarrow$

Example	of avaluad a	c_{comp} (fitness 0.05	:20)	
Experiments				
	00000	0000	000000000000	
PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End

ヨート

PCG	RAPP	Simplified Boardgames	Generalized RAPP	The End
	00000	0000	000000000000	•0

Summary

Contribution

- Generalization and formalization of RAPP approach for games evaluation.
- Application in Simplified Boardgames class.

Conclusions

- Works best as a sieve with human intervention in the last stage.
- Time consuming (requires many expensive simulations).
- By using MCTS with different time limits can be made knowledge-free.

PCG O	RAPP 00000	Simplified Boardgames 0000	Generalized RAPP 00000000000000	The End O●
			1001-	
		é D	13	
	1		100°	

THANK YOU

1

イロト イヨト イヨト