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Abstract. We deal with the problem of automatic generation of com-
plete rules of an arbitrary game. This requires a generic and accurate
evaluating function that is used to score games. Recently, the idea that
game quality can be measured using differences in performance of var-
ious game-playing algorithms of different strengths has been proposed;
this is called Relative Algorithm Performance Profiles.
We formalize this method into a generally application algorithm estimat-
ing game quality, according to some set of model games with properties
that we want to reproduce. We applied our method to evolve chess-like
boardgames. The results show that we can obtain playable and balanced
games of high quality.
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1 Introduction

The idea of Procedural Content Generation has been found widely applicable to
creating various parts of computer games. It can be used for generating every
single part of the game, from textures and items, through levels and music, to AI
opponents [1]. However, the most challenging task here is to generate a complete
game [2–4]. The core of that task concerns game rules, which will specify the
environment, the player role, and the plot. So far, several such attempts were
made, creating games belonging to some restricted classes of possible rules. The
most notorious one is Browne’s Ludi system [5], which created two commercially
successful boardgames. Also it is worth mentioning that METAGAME, one of
the first general game playing systems producing symmetric chess-like games,
also was equipped with a generator of rules [6].

Of course attempts of game generation do not end on boardgames, and some
results concerning different genres have been published. Let us just mention
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here card games [7], strategy games [8], and Pac-Man-like grid-world games [9].
Arcade-style video games become a domain of special interest. The ANGELINA
is an ongoing project generating complete games including rules, levels, and game
characteristics [10]. Alternatively, a Video Game Description Language (VGDL)
[11] game generator has been recently proposed in [12].

Although not so little research in the direction of generating complete games
was made, the main question – how to judge the quality of arbitrary games
and how to distinguish the good ones from the bad ones – still remains a key
problem. As it is usually not very difficult to generate syntactically valid game
rules belonging to some of the existing general game description languages, there
are numerous syntactically valid and playable games which are not interesting
from the human point of view.

In this paper we investigate the method of evaluation based on the assump-
tion that games should be primarily sensitive to the skill of players. We present an
extension of the method called Relative Algorithm Performance Profiles (RAPP)
[13], which makes use of score differences between strong and weak AI play-
ers to evaluate games. We applied our method in the domain of the simplified
boardgames [14], a modern language to describe chess-like boardgames, which
is more concise and less restricted than METAGAME.

Instead of computing the quality of a game basing just on the assumption that
we should be interested in games for which good algorithms play significantly
better than bad ones, we present more methodical and sophisticated approach.
First, for a given set of player strategies, we train our evaluating function using
a set of model games, i.e. games which have desired properties and should be
considered interesting. Then, to reduce computational effort, we use a generic
tactic to choose the subset of strategies that will best reflect relations observed
for the model. This allows us to value the game according to the level of similarity
between relations of the algorithms for the evaluated game and for the model.

1.1 General Game Playing

The aim of General Game Playing (GGP) is to develop a system that can play
a variety of games with previously unknown rules and without any human in-
tervention. Using games as a test-bet, the goal of GGP is to construct universal
algorithms performing well in different situations and environments. As such,
GGP was identified as a new Grand Challenge of Artificial Intelligence and from
2005 the annual International General Game Playing Competition (IGGPC) is
taking place to foster and monitor progress in this research area [15]. The Gen-
eral Description Language (GDL) [16] created for that purpose can describe any
n-player, turn-based, finite, deterministic game with full information. The ex-
pressiveness of the language was even enhanced by some extensions: GDL-II [17]
which adds nondeterminism and imperfect information, and rtGDL [18] which
adds asynchronous real-time events.

A somewhat concurrent approach is represented by the General Video Game
AI (GVG-AI) Competition [19]. This is a brand new, yet very rapidly growing
area of GGP research. The special Video Game Description Language (VGDL)



was designed to describe limited class of Atari-like 2D arcade video games [11].
However, the players are not provided with the game rules which they have to
understand; instead, they have a simulation engine which they can use to learn
how the game behaves.

Although widespread research in GGP domain was initiated and motivated
by IGGPC, it should be pointed out that the idea is dated much earlier. The
first approach, concerning a class of fairy-chess boardgames has been done by
Pitrat in 1968 [20], and the second contribution, aforementioned METAGAME,
contains several works of Pell from 1992 [6].

1.2 Relative Algorithm Performance Profiles

The concept of player performance profiles has been used as a method for im-
proving the level of game playing programs by comparing them with various
opponent’s strategies [21, 22]. The idea behind the RAPP is to use a comparison
of playing agents not to evaluate their strategies, but to evaluate a game. This
is an indirect approach, which focuses not on the fact how the game is built, but
rather how it behaves. That makes RAPP a promising method for application in
the GGP domains, where game descriptions are complicated and very sensitive
(what actually applies to all GGP languages including GDL and VGDL).

The initial study concerning RAPP focuses on verifying if the concept is
applicable in the domain of VGDL games [13]. The authors show that in human-
designed games the differentiation between scores obtained by strong and weak
algorithms is greater than in randomly generated or mutated games. This leads
to the conclusion that good games should magnify the differences between the
results of distinct algorithms.

More insightful research has been presented in [12], where RAPP has been
used in a fitness function evaluating VGDL games. The function compares the
scores of the following two algorithms: DeepSearch presented in details in the
paper, and DoNothing which always returns the null action. A number of games
were generated; many of them evaluated with near-perfect fitness, and some
of them had interesting properties and features. Yet, for creating high quality
games, comparable to human-designed ones, the necessity of refining the fitness
function to identify more aspects of the game has been stated.

1.3 Simplified Boardgames

Simplified boardgames is a class of games introduced in [14] and slightly extended
in [23] (see [24] for an alternative extension). The simplified boardgames language
describes turn-based, two player, zero-sum games on a rectangular board with
piece movements being a subset of a regular language. The player can win by
moving a certain piece to a fixed set of squares, by capturing a fixed amount
of the opponent’s pieces of a certain type, or by bringing the opponent into
the position where he has no legal moves. Every game has assigned a turnlimit,
whose exceedance causes a draw.



The language can describe many of the Fairy Chess variants, including games
with asymmetry and moves that can capture own pieces. However, the regular-
ity of the description, besides being easily processable and concise, poses some
important limitations. Actions like castling, en-passant, or promotions are impos-
sible to express, as all the moves depending on the move history or (according to
the statement within the original language description) moves depending on the
absolute location of the piece. However, the latter restriction can be bypassed,
so it is possible to describe e.g. chess pawn initial two-square advance.

The set of legal moves rules for each piece is the set of words described by
a regular expression over an alphabet Σ containing triplets (∆x,∆y, on) where
∆x and ∆y are relative column/row distances, and on ∈ {e, p, w} describes
the content of the destination square: e indicates an empty square, p a square
occupied by an opponent piece, and w a square occupied by an own piece.

Consider a rule w ∈ Σ∗, such that w = a1a2 . . . ak, each ai = (∆xi, ∆yi, oni),
and suppose that a piece stands on a square 〈x, y〉. Then, the rule w is applicable
if and only if, for every i such that 1 ≤ i ≤ k, the content condition oni is fulfilled
by the content of the square 〈x +

∑i

j=1
∆xj , y +

∑i

j=1
∆yj〉. If move rule w is

applicable in the current game position, then the move transferring a piece from
〈x, y〉 to 〈x+

∑k

i=1
∆xk, y +

∑k

k=1
∆yi〉 is legal.

2 Method

RAPP is an approach to evaluate the quality of games by measuring results
of different controllers playing them.To use this method, one needs a set of
algorithms serving as controllers, and a set of approved games that will be used
as the model set. Then, a game is evaluated by running the algorithms on it, and
comparing their results with those obtained by playing the model set of games.

2.1 Games in the Example Set

As a set of exemplary, well-founded games, we have chosen ten human-written
variants of fairy-chess (including chess itself). Most of these games use the or-
thodox chess pieces, and have a similar starting state, e.g. the first line of pawns,
one king, or pawns promotion.

Our set of example games contains: Gardner, Action Man’s Chess, Petty

Chess, Half Chess, Demi-chess, Los Alamos Chess, Cannons and Crabs, Small-

Deacon Chess, Shatranj, and Chess. The detailed rules of each game can be
seen in [25]. In some cases, we had to omit some of the special game rules (eg.
castling, en-passant, promotion) to fit the game within the simplified boardgames
framework. The concept of chess check is replaced by the goal of capturing the
king. We also changed promotion of the weakest piece into the winning condition.
To each game we assigned a turn limit, whose exceeding causes a draw.



2.2 Evaluating Algorithms

As the evaluating algorithms we have used a min-max search with a constant
depth and different heuristic functions evaluating game states. In total, there are
16 distinct player profiles, which differ by strategic aspects they cover. Because
such a big number of profiles is impractical to evaluate a large number of games,
by analyzing their behavior on the example games, we narrowed this set to a
subset of algorithms that produce most characteristic results.

All the heuristic functions are sums of weighted game features. The primary
set of features contains material and positional features, which are general ap-
proaches to evaluate a state in a chess-like game [26]. For a given type of piece,
the material feature is the difference between the numbers of pieces of the two
players. The value of a positional feature for a given piece and square is 1 if
such piece occupy the square, and 0 otherwise. Thus, the weight of this feature
determines the willingness of the player to put a piece of that type on the square.

Implemented profiles use two strategies of assigning weights to material and
positional features. The first is Constant, and it assigns to every material fea-
ture the square root of the number of squares on the board, and zero to all
positional features. The alternative strategy is Weighted, which bases on the
mobility of each piece as presented in [23]. For every available move of a piece,
a probability that this move will be legal is estimated. The weight of the posi-
tional features is the sum of the probabilities of all moves that are legal from
the given square divided by the number of squares on the board. The weight of
the material features is the sum of all positional features for the given piece.

This primary set of algorithms can be improved by using the following more
subtle heuristics:
Mobility: This computes for each square the square root of the number of
legal moves ending on this square, and adds to the score of the game state
the difference between the sum of these values between players. The aim of this
heuristic is to promote expansion of pieces and covering a large area of the board.
Control: This is a similar, yet in some sense opposite, strategy to the previous
one. For every square it computes which player wins a maximal sequence of cap-
tures, i.e. who has more capturing moves, assuming that the square is occupied
by an opponent’s piece. The score of the game state is modified by the difference
between the numbers of squares controlled by the players. This strategy assists
protection of own pieces and points out holes in opponent’s defense, posing a
threat to unprotected pieces.
Goal: This modifies the values of pieces and squares that are crucial to win,
according to the method presented in [23]. The weight of pieces occurring in
the game’s terminal conditions are increased depending on their numbers in the
initial state. The larger it is, the less important is an individual piece. Moreover,
for the pieces whose aim is to reach some squares, the weights of positional
features are increased for the nearby squares (using the number of moves required
to move from a square to another as the distance measure). This heuristic, in
contrast to Mobility and Control, is computed at the beginning of the game and
does not tune weights during the gameplay.



We have used Constant or Weighted material heuristics with all combinations
of the three positional ones. From this point, we will use shortened names to iden-
tify these combinations; for example CGM stands for Constant+Goal+Mobility,
while WC denotes Weighted+Control.

2.3 Results

We have tested the performance of all sixteen algorithms by playing against each
other the games from the example set. For every game, each pair of the heuristics
played 100 times using three-ply deep min-max search, which gives 12,000 plays
to create a single game profile. The gathered data is the matrix of the average
scores between every pair of the heuristics. A win of a play was counted as 1
point, a draw as 0.5, and a loss as 0.

To evaluate how good each heuristic is, we took the average of its results
from playing against all other heuristics. We illustrate the performance of the
algorithms taking its average score for the games from the example set. This is
presented by the bars of example games in Figure 1.

From this point, we can see a clear tendency in the cases of some algorithms.
Heuristic CG is undoubtedly the worst, with C being the second worst. All
heuristics based on weighted material and position values performed above the
average score of 0.5. WGC is counted as the best heuristic, yet the differences
between the top three are very small (WGC – 0.66360, WC – 0.64927, WCM –
0.64780). However, the standard deviation shows that the set of example games
is not consistent, and some games have very different profiles than the others.

3 Selection of the Model

The results from the previous experiment show us that some games from the
example set behave substantially different in the set of example algorithms. For
example, the performance of CM and WGM in Petty chess (0.653 and 0.745,
respectively) is vitally better than in all other games, while the performance of
CGM for that game is the lowest (0.12). Hence, our first task is to narrow the
set of example games into a smaller set, which will contain games with similar
behavior. Then it will be used as the point of reference – the model for generating
game rules.

Due to the computational cost, we also needed to narrow the set of algorithms
used as evaluation profiles. Choosing the set of representative heuristics for a
given model set of games is the second task covered in this section.

3.1 Selecting Model Games

For two games G and H, given their profile matrices PG , PH obtained by running
n heuristics, we can calculate their level of resemblance in a standard way as the
pairwise distance between these matrices:

dist(G,H) =

∑n−1

i=1

∑n

j=i+1
(PG [i, j]− PH[i, j])2

n(n− 1)/2
. (1)
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Fig. 1. The average score and the standard deviation of the sixteen algorithms on the
sets of example and model games.

We can extend this definition to sets of games in the way that the distance
of a set is the sum of the distances between every pair of games from this set.

We computed distances of all subsets of the example games, and decided
to divide the example set into two subsets. The larger set in the best partition
is Action Man’s Chess, Cannons And Crabs, Chess, Los Alamos, Shatranj and
Small-Deacon Chess. This subset was evaluated as tenth among the sets con-
taining six games. On the other hand, the set of the remaining games is one of
the worst four element sets.

From the obtained results, we draw a conclusion that the larger subset rep-
resents a type of games which we are interested in. These games are significantly
different, yet share enough similarities to be relatively close in terms of perfor-
mance of the algorithms. The set also contains Chess, which is arguably one
of most popular board games with very desired strategic properties. Thus, we
decided to use this set as our model set of games.

The difference in performances of particular algorithms between playing the
model set and the full example set of games is presented in Figure 1. There
are significant variations in scores of some algorithms and, as expected, in most
cases the standard deviation is smaller.



(a):

CG

WGCM

WGC

0.974

0.971

0.730

(b):

C

CG

WGM

WGC

0.637

0.963

0.953

0.971 0.968

0.708

Fig. 2. Representation graphs of the relative performances in the models with (a) 3
algorithms and (b) 4 algorithms. The arrows are directed from the stronger toward the
weaker algorithm, and their labels contain the average score.

3.2 Selecting Evaluation Algorithms

Having the model set, we can evaluate how similarly a given game behave to
the model, by comparing the relative performances of the heuristics. The more
heuristics we will use, the more accurate evaluation will be. The drawback is that
the required number of tests grows quadratically in the number of heuristics. For
this reason, we needed to find a method of selecting a small number of algorithms,
which stand as the best representatives for the model games.

We have decided to selected the algorithms that are most distant to each
other in terms of their relative performances. The reasoning behind this idea is
twofold. First, the selected heuristics are substantially different, which allows fur-
ther evaluation to incorporate more game features. Second, we take into account
only the most essential differences in performance, which are easier to capture
during evaluation using a smaller number of test plays. If the difference in the
performance of two algorithms is small, it could be easily misjudged, depending
on the number of test plays.

Let Pmodel be the matrix containing the average relative performances on the
model games of some k algorithms. We can define its spread as follows:

spread(Pmodel) =

k−1
∑

i=1

k
∑

j=i+1

|Pmodel[i, j]− 0.5|2. (2)

Then, for the given k, we can compute the matrices for all k-subsets of the
example algorithms and calculate their spreads. We performed this computation
for k ∈ {3, 4, 5}, and found the subsets with the largest spreads. For k = 3
this is CG, WGC, and WGCM ; for k = 4 this is C, CG, WGM, and WGC ;
for k = 5 this is C, CG, WGM, WGC, and WGCM. In further experiments, we
will use two models, using the best 3-subset and the best 4-subset, respectively.
A visualization of the relative performance of the algorithms in these models is
shown in Figure 2.



3.3 Fitness Function

According to our RAPP method assumptions, the fitness of a game should be
based on the distance between the matrix the algorithm performances for that
game and the average performance matrix of the model games. This, however,
is not enough to ensure that desired game properties will be fulfilled. There
are several features that may be important for a good boardgame, e.g. balance
between players, complexity of the rules, branching factor, game length, and
usage of the pieces [27]. Our goal was to keep the fitness formula as simple and
general as possible, so we decided to choose two features we perceive as the most
crucial in the case of the simplified boardgames: balance between players and
game length being not too short.

Let scorew be the percent of points scored by the white player during p test
plays, and scoreb be the number of points scored by the black player. Then
B = |scorew − scoreb|/p is the balance between the players. Let say that a play
is too short if it ends in 10 turns. If during the test s games were qualified as
too short, then Q = s

p
is the measure of the game’s quickness. At last, let D be

the modified formula (1) of distance between the game’s matrix of the algorithm
performances and the model matrix, where the absolute value of the difference
is used instead of the power of two. Then, our fitness function is calculated as
follows:

f =

{

(1−D)(1−B)(1−Q) if the game is playable,
−1 otherwise.

(3)

The game is considered as playable if during the test all plays fit within the
given timelimit. This function roughly matches with our intuition about that
when a given game should be considered better than the others. We made some
experiments using the unmodified formula (1), yet because it usually returns
very small values, the overall fitness was high, and the differences between good
games and slightly-less-good games were very small. For this reason we decided
to stricter results to increase the impact of D in the formula, and make the
differences in fitness more visible.

4 Evolving New Games

Our goal is to generate games which have similar properties, in the sense of
efficiency of strategies, to the games in the model. We use RAPP to achieve that,
and evolutionary search over a constrained subset of the simplified boardgames.

4.1 Generating Games

For the sake of efficiency and reduction of the search space, we restricted our
generating mechanism to produce only chess-like games. By that, we mean the
games fulfilling the following additional conditions:

• The initial position is symmetric and contains two rows of pieces for both
players. The front row contains only the pieces called pawns or empty squares.
The back row contains, among other pieces, one piece of the king type.



• The terminal conditions are symmetric. A player wins by capturing the en-
emy king, or by reaching the opponent’s back row with a pawn.

To generate a new game, we start by selecting randomly parameters width and
height of the board, the number of non-winning types of figures (in addition
to always present king and pawn). For the purpose of our experiments, width
and height are taken from {6, 7, 8}, and the number of figures from {3, 4, 5}.
Parameter turnlimit is computed by the formula 3 × width × height + r, where
r is a uniformly random number taken from {0, . . . , 19}.

Generating the initial position is straightforward: In the front row every
square can be either empty with probability 0.1 or occupied by a pawn. The king
is placed uniformly at random in a column of the back row, and the remaining
squares are either empty with probability 0.1 or filled by a non-winning piece
chosen uniformly at random.

The remaining part, generating regular expressions for descriptions of piece
rules, is more challenging. First, we generate a lot of raw move patterns; they
will be used as building blocks for piece rules. A single raw move pattern is a list
of tuples (∆x,∆y, on, star), where ∆x and ∆y are signed integers that define the
horizontal and vertical shifts of the moves, on is from {e, p, w, ep, ew, pw} and
defines allowed contents on the destination square (e – empty, p – enemy’s piece,
w – own piece), and star is a logical value indicating whether this tuple can be
repeated with Kleene star. There is also a set of modifiers extending the pattern:
FB mirrors the pattern across the horizontal axis, and ROT rotates the pattern
through 90◦, 180◦, and 270◦ about the relative origin (0, 0). For example, the
orthodox rook can be described as (0, 1, e, true)(0, 1, ep, false)[ROT ]).

Generating raw move patterns is based on a number of parameters. The
process begins with picking at random a list of (∆x,∆y) pairs. Exemplary prob-
ability values for each possible pair are listed in Table 1(a). New elements are
added to the list as long as another probability test is passed. Next, we extend
the list by adding on values. The exemplary probability table used for that pur-
pose is shown in Table 1(b). We use a separate set of probabilities to determine
the content of the destination square in the last part of a pattern. In particular,
we do not allow self capturing, while it is possible to step over own figures during
the movement. The last step is to add modifiers. As long as the probability test
of the modifier_prob parameter (e.g. 0.1) is passed, one modifier is added to the
pattern (see Table 1(c) for exemplary values). When STAR modifier is drawn, it
is applied to a random tuple in the list by changing the star value to true. Also,
if ∆x > 0 occurs in the pattern, we mirror it across the vertical axis to avoid
side asymmetry. This completes generating raw move patterns.

Next, we generate each piece by choosing raw patterns, whose sum will be
used as the movement language. This process is guided by the following two
parameters: the chance of adding a new raw pattern to the set, and the maximal
mobility of the piece. Because the values of these parameters are different for
king and pawn, and non-wining pieces, we can enforce limited mobility for kings
and pawns, to make resulting games more chess-like.



Table 1. Exemplary probability parameters used in generating games for picking at
random: (a) relative coordinates, (b) square content, (c) pattern modifiers.

∆y\∆x 0 +1 +2 +3

+3 0.6% 0.6% 0.6% 0.6%
+2 7% 7% 3.5% 0.6%
+1 20% 14% 5% 0.6%
0 0% 16% 7% 0.6%
-1 7% 7% 1.4% 0.6%

(a)

on e p w ep ew pw

normal 42% 14% 14% 7% 7% 14%
last 33% 33% 0% 33% 0% 0%

(b)

modifier FB ROT STAR

probability 50% 25% 25%

(c)

A weak point of this approach is that it heavily relies on human designed val-
ues. We have used four different settings, including the one presented here. The
main differences in the settings we used were in probabilities of long-range jumps,
probabilities of backward moves (also with additional possibility of ∆y = −2),
chances of applying modifiers, and probability of enlarge a raw move pattern.

4.2 Genetic Operators

Let n be an even population size. Given fitness values, we select n/2 pairs of
parents using the roulette-wheel method. Although it never happened in practice,
in this method if all games from the population have fitness less than or equal
to zero, the uniform selection is used instead. Every pair of parents produce two
offspring using the uniform crossover, which independently swaps some squares
of the initial position (except the squares containing kings) and some piece rules.

There are two types of mutation, both independently modifying an offspring
with some small probability. The piece mutation regenerates the rule of a random
piece. The position mutation changes the content of a random square. If the
square belongs to the first row, a pawn is replaced by the empty square and vice
versa. If the square is occupied by the king, it is swapped with some other second
row square. In the remaining cases, the square content is replaced by a random
non-winning piece or the square is left empty (with uniform probability).

The next generation is created by choosing the best n games from the popu-
lation of parents and children. The evolution process stops when the maximum
number of generations is done.

5 Experiments

We tested our method using the extracted set of six model games and the two
variants using 3 and 4 algorithms. We generated 200 games (using four sets of
parameters), and evaluated each of them by 3 or 4 algorithms. In all our tests,
we have used 50 min-max plays (25 per side) with depth 3 to compare every
pair of algorithms and obtain the values to the profile matrix of the game. In
the same way, we also evaluated all the example games.



Table 2. Comparison of game evaluation between the sets of example games, randomly
generated games, and evolved games. The last column contains the results of the test
with increased population size and mutation rate.

Variant 3 algs. 4 algs. 4 algs., population 16

Max. Avg. Promising Max. Avg. Promising Max. Avg. Promising

Evolved 0.971 0.911 100% 0.959 0.916 100% 0.978 0.922 100%

Generated 0.907 0.671 29% 0.942 0.704 34%
Example 0.858 0.811 90% 0.959 0.859 100%

The last test used evolution. For both variants with 3 and 4 algorithms we
made 12 runs of evolution with populations of size 10, and both mutation rates
equal to 5%. Additionally, we made 12 runs for the variant with 4 algorithms,
and increased population size to 16 and mutation rates to 10%. In all these cases,
the number of generations was 20.

5.1 Overview

We say that a game is promising if its balance factor B of the fitness function is
less than 0.2 and its Q factor is less than 0.05. Such games may not have a great
score taking into account the set of model games, but their properties assure
that they should be at least human playable.

For all sets of games (example, generated, and evolved), we used two measures
of comparison: the maximal fitness within the set and the average of the fitness
of promising games. We are convinced that the last one is very important, as it
shows the potential of the set. It may happen that the top game is not the best
one from the human point of view; then the other candidates should be as good
as possible in terms of accordance with the model. At last, we show the percent
of promising games within the sets. These results are presented in Table 2.

As we can see, in all variants the best individual score was obtained by the
evolutionary approach. Moreover, the average score of all final populations is also
the highest. On the other hand, a pure generation can create a game even better
than the best one from the example set (as in the variant with 3 algorithms),
yet it is not so likely. The average score is low, as it is the fraction of promising
games. Thus, the pure generation is too general and too random to be seen as a
proper method just by itself, and there is a necessity of combining it with some
score-improving method as evolution process. The score of the example games is
not so high as one might think; this is due to the fact that the model reflects the
average relations observed between the games, so every individual is likely to be
distinct to that average. However, the games from the model set were usually
rated better than the other example games that are outside the model.

There are two important observations. One is that, a larger number of al-
gorithms indeed yields a better ordering of games and evaluations closer to ex-
pected, as the score is obtained using a more detailed model. The second is that,
the evaluation method is very play-sensitive, i.e. the scores of one game obtained



by consecutive tests can vary. Although the general tendency, whether a game is
good, average, or poor, usually remains clear, the detailed results may be signif-
icantly different. This can influence the ordering of games and so the evolution
process. However, to achieve better stability, it should be sufficient to increase
the number of plays used for game evaluation.

5.2 Evolution results

Figure 3 presents the course of the evolution in the variant with 4 algorithms
and population of size 16. This look similar in the other variants, but in the
variant with 3 algorithms, the density of final scores distribution is visibly lower.

Fig. 3. Visualization of our evolutionary runs in the variant with 4 algorithms and
population of size 16. The left and right charts show respectively the maximum and
average fitness values of playable games in every iteration.

It can be seen that the process of evolution can increase the quality of the
population to a decent level even when the initial population is poor. What is to
be expected, the improvement of the best individual takes place stepwise, as it
is not so easy to obtain a better game in every generation. On the other hand,
the improvement of the average population is more smooth. Also, usually, except
the first few generations, all games remaining in the populations are promising,
so dysfunctional individuals are quickly discarded.

An example of an evolved game is presented in Figure 4. This game ap-
peared in the 16-th generation and obtained score 0.9538. Its rules are not too
complicated and human-readable, and it requires a non-trivial strategy since the

beginning. Note that an opening usingF blocks the pawn advance of the oppo-
nent. Thus, to be able to move out the other pieces, and simultaneously prevent
opponent’s expansion, the player has to move his own pawns in a clever way.

Although pawns seem to be powerful and advance rapidly, it is impossible to
move them to the opponent’s backrank, so capturing the king remains the only
reachable goal. It is common between best-scored games that pawn usefulness
is very limited, e.g. they cannot advance but only move sideways. It seems that
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Fig. 4. Initial position and piece rules for the evolved game. Destination square con-
tent (from {e, p, w}) designates legal moves. Moves with consecutive requirements are
distinguished by colors and arrows. The pawn symbol is F, and the king symbol is
l. The turnlimit is 160.

pawn movements are so crucial and hard to control that it is easier to gain better
game flow stability by reducing their impact on the game than by finding a set
of moves that is not too strong yet still substantially useful.

Also we have found that the rules which seem pretty understandable in their
regular expression form are often very hard to be translated on the board and
remembered during a play. It seems that by generating we can easily produce
movement rules which are reasonable, yet over-complicated from the human
point of view. This observation addresses the problem of differences between
generating game rules for humans and for AI players (e.g. to be used during
GGP competitions).

6 Conclusion

We proposed an extension of the RAPP method evaluating the quality of a game
using the performances of game-playing algorithms. The original approach was
based on the assumption that in well-designed games, strong algorithms should
significantly outperform weak ones. In this paper, we presented a more sophis-
ticated solution, which uses more detailed information concerning the mutual
relations of the given algorithms, and thus, it is able to catch and evaluate more



subtle aspects of games. However, to make this working, one needs a set of model
games, which have desired strategic properties, and use it to actually train the
evaluation function.

The previous application of RAPP concerns VGDL games [12], which are
one-player puzzles focusing on maximizing the player’s score. We have shown its
application in the domain of two-player, zero-sum games belonging to the class
of simplified boardgames. We also tested it with different numbers of algorithms
used for performance comparison in the evaluation function. In contrast with
the previous study using only 2 algorithms, we provided an evaluation function
in a more general form, which can be applied with any number of strategies, and
allowed us to perform tests with 3 and 4 algorithms.

Finally, we applied our method to an evolutionary system, which was able to
produce in some cases even “more model” games than these actually used in the
model set. Not all of the top rated games could be evaluated as well-designed by
human players. The reason for that is mostly abnormality and large complexity
of movement rules. However, this issue can be solved in two ways: by improving
move generation techniques and their parameterization, or by extending the
fitness function to take into account features like complexity of the rules or
pieces usefulness.

A nice property of the RAPP method is its generality. The presented meth-
ods of extracting the set of model games and model algorithms are domain
independent, and can be used for any types of games. Unfortunately, the task of
finding sets of example games and algorithms requires human expert knowledge
on the subject. Making these tasks knowledge-free is a potential field of further
study. In the case of example algorithms, the simplest (yet probably of low qual-
ity) approach is to use an MCTS algorithm, where the strength of a player is
determined by its timelimit.

We confirm the conclusions from [12], that the best use for a RAPP-based
game generation is being a fine sieve, with a human intervention at the last stage,
where a man can choose the best game from the given results. Also, we confirm
that the game evaluation, as it requires a significant number of simulations, is
very time-consuming. However, given very promising results, it is a choice of
preferring quality over quantity. The expected practical usage of such generated
games, concerning e.g. providing interesting and novel games for the GVG-AI
competition [19], requires obtaining just over a dozen games per year.
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