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Abstract—In this paper we assess the progress of General
Game Playing by comparing some state-of-the-art GGP players
with an exemplary program dedicated to playing games in
a smaller class called Simplified Boardgames. Conclusions on
further possible development are made. The paper is also the first
step in creating a standard test class for measuring performance
of GGP players.

I. INTRODUCTION

The aim of General Game Playing (GGP) is to develop a
system that can play variety of games with previously unknown
rules. Unlike standard artificial game playing, where designing
an agent requires special knowledge about the game, in GGP
the key is to create a universal algorithm performing well in
different situations and environments. As such, General Game
Playing was identified as a new Grand Challenge of Artificial
Intelligence and from 2005 the annual International General
Game Playing Competition (IGGPC) is taking place to foster
and monitor progress in this research area [1].

Games in GGP are described in a language called Game
Description Language (GDL) [2]. It has enough power to
describe all turn-based, finite and deterministic n-player games
with full information. Playing a game given by such a descrip-
tion requires not only developing a move searching algorithm,
but also implementing a reasoning approach to understand the
game rules in the sense of computing legal moves, the state
update function, and the goal function.

Through a decade of developing general problem-solving
approaches, a great advancement has been achieved. New
approaches, algorithms and data structures have been used to
improve players’ efficiency. Despite that fact, still GGP players
are not a match for the specialized programs designed to master
one game only. This, however, shows a lack of some “in-
between” problem which can be used as comparison, being
on the edge of GGP programs capabilities. This should be a
mid-range class of games, much tighter than that described by
GDL, but wide enough to be challenging on its own.

Such general classes of games, simpler than GDL, were
created as first approaches to the general game playing idea
by Pitrat in 1968 [3], and later by Pell in 1992 [4]. Both of
these classes were describing chess-like boardgames, which
ensures that some of standard approaches used in chess and
checkers engines can be reused for creating efficient playing

programs. For example Pell’s Metagamer [5], used alpha-beta
minmax search with a predefined set of evaluation functions.

A larger, but simpler to describe, class called Simplified
Boardgames was proposed recently by Björnsson [6]. This
class contains two player, rectangular board games, where
piece moves are described by regular expressions, independent
of piece position and move history. Simplified Boardgames
research focused mainly on the learning of legal moves based
on the observation of matches.

In this paper we are using Simplified Boardgames as a
comparison class for GGP players. We designed a program that
can play previously unknown boardgames in a manner defined
by the GGP protocol. Our player uses the alpha-beta minmax
algorithm and evaluates states by material and position analysis
using piece tables and piece-square tables. Proper weight
assignment for the evaluation function, which was stated as
an open problem for Metagamer player ([5]) is solved here by
applying temporal-difference learning [7]. This was one of the
ideas mentioned by Pell, and it was already applied for the
material analysis in some non standard chess variants [8], as
well as for standard chess [9]. We provided several experiments
opposing our simplified boardgames player against some of the
top GGP players, and comparing efficiency for different styles
of learning.

The paper is organized as follows. Sections II, III and
IV, provides necessary background for General Game Playing,
simplified boardgames and reinforcement learning respectively.
Detailed setup of our experiments is presented in section V.
Section VI contains overview of the results. We conclude and
give perspective of future research in Section VIII.

II. GENERAL GAME PLAYING

General Game Playing, in its modern form introduced in
2005 at Stanford University, focused on developing programs
which can play, without human intervention, in any game
described by Game Description Language. We assume that
the reader is familiar with basics of this domain of AI. For
a detailed, up-to-date survey of the discipline we recommend
[10].

A. Game Description Language

Game Description Language [1], [2], is a strictly declara-
tive language using logic programming-like syntax based on



the Knowledge Interchange Format. Every game description
contains declarations of player roles, initial game state, legal
moves, state transition function, terminating conditions and the
goal function.

GDL does not provide any predefined functions: neither
arithmetic expressions nor game-domain specific structures
like board or card deck. Every function and declaration must
be defined explicitly from scratch, and the only keywords used
to define game are presented in Table I.

TABLE I. GDL KEYWORDS

(role ?r) ?r is a player
(init ?f) fact ?f is true in the initial state

(true ?f) fact ?f is true in the current state
(legal ?r ?a) in the current state ?r can perform action ?a
(does ?r ?a) ?r performed action ?a in the previous state
(next ?f) ?f will be true in the next state

terminal current state is terminal
(goal ?r ?n) player ?r score is ?n

The execution model works as follows. Starting from the
initial state, in every state s every player r selects one legal
action. Then, the joint move of all players is applied to the
state update function to obtain a new state s′. If s′ is terminal,
then every player has given goal score and the game ends.

To be considered as valid a GDL game specification must
be stratified and allowed. This, and other syntactic restrictions
ensures that the game have a unique standard model with only
a finite number of true positive instances, so all deductions
about the state and its successors are finite and decidable. For
details we must refer to [2].

B. GGP Framework

Every GGP match is supervised by an application called
game controller, which is responsible for supervising the
course of the game including guarding timelimits and com-
municating between players using HTTP messages sent via
TCP protocol. The detailed specification of the communication
protocol can be found in [1].

A match begins with a message sending to players game
rules in GDL, their roles, and two timelimits: startclock and
playclock. The players have time to process the given rules and
after startclock seconds send confirmation to the controller.
Then, until a terminal state is reached, the players have to
select their moves and send them to the controller within
playclock seconds, while the controller sends back the played
(joint) moves, necessary for players to calculate the next game
state. If a player does not send legal move within the time
limit, the controller will record a proper error and continue,
substituting this player’s move with random legal one.

C. Reasoning Engines

The reasoning engine, or simply reasoner, is an essential
part of every GGP player allowing it to perform the state
update. Given a state and moves of all players, the reasoner
has to compute a new state including information about legal
moves, terminality condition and player scores.

An efficient reasoner implementation is one of the most
important parts of the general game player. Move searching
algorithms, either simulation-based [11] or knowledge-based
[12], require fast computation of parts of game trees, to
improve their outcome. For this reason many of the players
use distributed architectures to support parallel computations
[13], combined with specialized solutions to speed-up GDL
reasoning like compiling GDL into another language [14],
[15], usage of propositional networks [16] or instantiating
games to use binary decision diagrams [17].

III. SIMPLIFIED BOARDGAMES

The class of Simplified Boardgames introduced in [6]
covers a set of games defined by the following rules:

• The game is played on a rectangular board consisting
n×m squares. There are two players: black and white,
each player controls an army of pieces, possibly of
multiple types. Every square can be occupied by at
most one piece. There is a fixed initial position.

• Players take actions in turns, with white starting. On
its turn, a player moves one of its pieces from its
current square to a different one, if such move is
allowed by the game rules. If any piece, own or
opponent’s, happens to be on the destination square,
it is removed from the board (captured).

• A terminal position arises when a piece of a certain
type reaches a goal square, a current player has no
legal moves, or there are less pieces of a certain
type than some fixed constant (here we extend the
simplified boardgames class; the latter condition was
not the part of the original definition in [6]). The set
of terminating rules is fixed, and can by different for
each player.

• The game is a zero-sum game. When a player shifts
the game into a terminal position, the winner is
decided based on the fulfilled terminal conditions. If
no winner is determined until a preset maximum game
length is reached, the game ends in a tie.

A set of legal moves rules for each piece is the set of
words described by a regular expression over an alphabet Σ
containing triplets (∆x,∆y, on) where ∆x, ∆y are relative
column/row distances and on ∈ {e, p, w} describes a content
of a destination square: e indicates an empty square, p a square
occupied by an opponent piece, and w a square occupied by
an own piece.

Consider a rule w ∈ Σ∗, such that w = a1a2 . . . ak, each
ai = (∆xi,∆yi, oni), and suppose that a piece stands on a
square 〈x, y〉. Then, the rule w is applicable if and only if,
for every i ≤ k, the content condition oni is fulfilled by a
content of the square 〈x +

∑i
j=1 ∆xj , y +

∑i
j=1 ∆yj〉. If a

move rule w is applicable in a current game position, then the
move transferring a piece from 〈x, y〉 to 〈x+

∑k
i=1 ∆xk, y+∑k

k=1 ∆yi〉 is legal.

The language of piece’s moves is impartial to the current
absolute position of a piece. Rules where the same square is
visited more then once are forbidden. An example of how
move rules works is shown in Figure 1.



8 rZkZ0Z0s
7 o0Zna0o0
6 0ZbZ0Z0o
5 ZpZnZpZ0
4 0ZPO0Z0Z
3 Z0ZQZNA0
2 0O0Z0OPO
1 S0Z0Z0J0
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Fig. 1. A chess example. Two legal moves for the queen on d4 are shown.
The capture to f5 is codified by a word (1, 1, e)(1, 1, p), while move to a3
is encoded by (−1, 0, e)(−1, 0, e)(−1, 0, e). The move to f3 is illegal, as
in the language of queen’s moves, no move can end on a square containg
own’s piece. The d5− f6 knight move is a direct jump without necessity of
checking content of in-between fields, so it is codified by a one-letter word
(2, 1, e).

The main feature of the described class is simplicity in
defining game rules, especially encoding moves as a regular
language, excluding any “non regular” moves as promotion,
castling, en passant, etc., (which were partially present e.g., in
Pell’s Symmetric chess-like games [18]). For that reason, along
with the name simplified boardgames, we will use the term
regular boardgames, especially when we want to emphasize
extended terminal conditions.

IV. REINFORCEMENT LEARNING IN BOARDGAMES

The key idea of reinforcement learning [7], [19] applied
to games, is to learn the evaluation function by increasing the
weights of the features which positively contributed to good
choices of moves, and decreasing the weights of features which
lead to bad moves. The question of which moves are good and
which moves are bad is solved in a straightforward way by the
assumption that all moves leading to a won game are good,
while all moves leading to a lost game are bad. If a learning set
is big enough, the statistics guarantees that favorable positions
will occur more frequently in won games thus, the features
which describes them will have higher weights.

A. Evaluation Function

The standard approach to evaluate a state of a game is to
use some set of features F with a linear evaluation function
of a form

E(p) =
∑
f∈F

wf · f(p), (1)

where each individual feature f is a function assigning to each
position p a real number, and wf is a weight assigned to that
feature. The task of learning the evaluation function for a given
set of features is reduced to finding the weight values.

In our experiments we use two types of features which can
be safely applied to all games in the simplified boardgames
domain: material (piece values) and position (piece-square
values). For every player, we create a material feature for each

available type of piece, counting the number of pieces of that
type for each side. Since in simplified boardgames the initial
position does not have to be symmetric, we assume that the
importance of the same piece for each player can differ, thus
it should be evaluated separately. For both players, for each
type of piece we create n ·m position features (assuming the
board size is n×m). The feature value is 1 if the appropriate
square is occupied by a piece of that type, and 0 otherwise.

To evaluate a given position from the perspective of the
player who has to make a move, we sum weighted values
of his pieces’ features and subtract weighted values of the
opponent’s pieces’ features. For example, if a white-to-move
game position p contains two white rooks on squares (x1, y1)
and (x2, y2), and a black rook on the square (x3, y3), then the
position evaluation for white is:

E(p) = 2·wWR−wBR+wWR(x1,y1)+wWR(x2,y2)−wBR(x3,y3),

where WR is a material feature containing the number of
white rooks (analogously BR contains the number of black
rooks), and WR(x, y) is a position feature equal to one
only if a white rook stands on the square (x, y) (analogously
BR(x, y)).

B. Temporal-difference Learning

The reinforcement learning algorithm most frequently used
in game playing is temporal-difference learning [20]. The
most famous example of its successful usage is Tesauro’s
backgammon player which achieved a world champion level by
learning only from self-play [21]. Faster convergence of TD(λ)
algorithm is achieved by learning using differences between
successive position estimations rather than the final score only.
More precisely, for given feature f , its weight update at time
t is computed by the following formula:

∆wt,f = α(Pt+1 − Pt)

t∑
k=1

λt−k∇wf
Pk, (2)

where Pt is a position evaluation at time t, α is a global
learning rate, ∇wf

Pk is the partial derivative of Pk with
respect to wf , and λ is a parameter providing an exponentially
decaying weight for more distant outcomes, minimizing their
influence on the current position.

We want our predictions to reflect the probability of
success, so we transform our raw evaluation E given by (1)
into a sigmoid function

P (p) =
1

1 + e−ωE(p)
, (3)

with parameter ω influencing the curve steepness. Then, the
weight update ∇wf

Pk for the feature f can be computed using
the formula

∇wf
Pk = f · Pk · (1− Pk). (4)

In our experiments we use the TDLeaf(λ) algorithm [9] which
was designed to be effective on chess-like games where move



selection is based on deep searches. The key idea of this algo-
rithm is to take the principal variation leaf node obtained from
the search tree rooted in p rather then position p itself. We also
use the Temporal Coherence algorithm [22] to dynamically
adjust learning rate α for each feature separately.

V. EXPERIMENTAL SETUP

We have developed a program which can play any given,
previously unknown, regular boardgame according to the Gen-
eral Game Playing framework. This allows us to compare our
Regular Boardgame Player (RBgPlayer) with GGP players.
We have chosen a few games and encoded them both in GDL
and in regular boardgame format. Then we run matches using
a standard GGP game controller. Players had some startclock
time to prepare themselves to play and after that, they had
to alternately perform moves, not exceeding playclock time.
During one player turn the other one could perform some
computations, but it had to sent the special NOOP move (which
was the only legal move in GDL version) within the timelimit.

A. Games

Experiments have been performed using the following
games, differentiated due to their size (depth and branching
factor) and importance of material/position advantage:

Regular Chess is a standard game of chess cut to the regular
boardgames framework. Thus there is no promotion nor check
constraints; 50-move rules and draw by position repetition do
not apply; special moves such as castling, en passant, two step
pawn move are not allowed. To win the game, one has to
capture the opponent’s king or reach the opponent’s backrank
with a pawn. The game is considered as draw after 200 turns.

Regular Gardner (recently weakly solved [23]) is one of
the minichess variants, played on a 5 × 5 board with a 100
turn limit. The starting position looks as in the regular chess
with removed columns f , g, h, and rows 3, 4, 5. The same
rules as in regular chess apply.

Regular Asymmetric Los Alamos is a slight modification of
the standard Los Alamos 6×6 minichess variant. White pieces
are the same as in the standard version (backrank from left:
rook, knight, queen, king, knight, rook), but the black player
has two bishops instead of two knights. Winning conditions
and other rules are the same as for the Regular Gardner, with
the exception that the turnlimit is set to 120.

Regular Escort Breakthrough is a modified version of the
standard 8×8 breakthrough. Every player has one king on his
backrank, and a row of pawns before it. A pawn may move
one space straight or diagonally forward if the target square
is empty, and only diagonally forward if it is occupied by
enemy’s piece. A king may move as the standard chess king,
except that it cannot move backwards. To win, one has to reach
opponent’s backrank with the king. If no one wins within 60
turns, the game ends in a draw.

B. Search Engine

The basics of the search algorithm used in our RBgPlayer
is negamax, which is a variant of standard alpha-beta that
relies on the zero-sum property. We used the parallel iterative
deepening algorithm complemented with a quiescence search

and killer-move heuristic. We use non-persistent transposition
tables, removing unattainable positions after captures.

During the RBgPlayer’s turn, we start the iterative deep-
ening search from depth 3, with parallelization occurring on
the highest level only. When the time limit is reached, the
embedded timer terminates searching and the result from the
last fully computed depth is returned.

C. Learning Features Weights

The learning phase occurs during the opponent’s turn and
in preparation time before the match begins. We perform a
series of constant depth playouts, without quiescence search,
updating the weights after every playout. We learn weight
updates separately for the white and black player, and we use
the average as the final update.

We do not use non-determinism or randomness during the
move searching phase to prevent game repetition, which is
often an important issue during self-play learning. The main
reason is that this would significantly slow down searching in
situation where the time is crucial. Also, our learning function
is self adapting during the game’s course, depending on the
opponent’s choice of moves, which makes the self-play part
safer for over-fitting errors.

If the time and game tree allow, we increase the playout
depth (starting from 2), remembering times of longest playouts.
This allows us to run more accurate simulations with assurance
there will be enough of them (our algorithm tries to have at
least 20 simulations per turn).

The real danger during the learning process, making play-
out repetition most probable, is too fast minimization of the
learning value α, set by the Temporal Coherence algorithm. To
prevent this, we update α values not after every simulation, but
after every tenth simulation. According to our observations,
this is enough to ensure that decreasing α is a result of a real
weight convergence, not only coincidental cases.

D. Computing Initial Weights

Normally, computing proper weights takes a very long
time. For example, according to experiments conducted in [8],
piece values stabilized after 250-500 full matches, depending
on the game. Because during a GGP match we do not have time
for such an exhaustive learning process, we have developed a
heuristic algorithm to compute initial weights based mainly on
piece mobility and winning conditions.

As the first step, we identify how aggressive the game is,
by counting ratio between displacement moves, captures and
self captures; and then predict the content of the board during
a middle game. The result of this prediction is given in a form
of probability that a square will be empty, occupied by white
or occupied by black. Then, for a given move rule we calculate
its score, equal to the probability that this move will be valid.
This is done by multiplying probabilities for all steps except
the last one. If the final step is capture, we multiply the move
score by 2, assuming that the possibility of capturing enemy
pieces can always give advantage.

The initial weight for a position feature of a given piece
is the sum of the scores of the moves that can be performed



by the piece from the given square, divided by the size of the
board (n×m). The material feature weight of a piece is just
the sum of all its position features weights.

The weights computed so far, are now modified taking into
account winning conditions. Let s be the constant describing
the winning score in min-max nodes evaluations. If some
player wins by capturing k pieces of a given type, then this
piece’s value is increased by k

√
s. This results in better pro-

tection of pieces which losing has more severe consequences.
If some player wins by reaching a goal square by a piece of
certain type, and he has j such pieces in the initial position,
then the value of this piece is increased by j

√
s. In this case,

we also modify the piece-square values. The values of goal
squares are increased by s. The value of each square from
which a goal square can be reached in l ≤ max(n,m)

2 moves, for
each move, is increased by

l
√
s

nm multiplied by the probability
of the move. This rewards advancing such pieces. However,
because bonuses are not too large and added only in a limited
board area, it prevents the blind march, which usually ends in
capturing lonely pieces.

E. Reference GGP Players

We compare our min-max based RBgPlayer with two GGP
programs, both using variants of the Monte Carlo Tree Search
algorithm which, since its first success in IGGPC 2007, is the
most popular algorithm for GGP players.

Dumalion is one of the top 8 players in 2014 International
General Game Playing Competition, during which it won
against previous year’s champion TurboTurtle. Dumalion is
based on a GDL compilation mechanism [24] and paralleliza-
tion of the UCT algorithm over a cluster of computers. The
main program is written in Java and running on a computer
with Intel(R) Core(TM) 2 Quad CPU Q9300 2.50GHz 4 cores
and 4GB of RAM. GDL reasoners are compiled into the C++
language and during this test run on 25 computers with Intel(R)
Core(TM) i7-2600 CPU 3.40GHz 4 cores and 16GB of RAM.

Sancho by Steve Draper and Andrew Rose is the winner
of the 2014 International General Game Playing Competition.
The program uses the UCT algorithm and propositional net-
works [16] as a reasoning engine. It is written in Java, and
operates on Intel(R) Core(TM) i7-4770K 3.50GHz CPU 4
cores computer with 32GB of RAM.

Unfortunately, no publications are available revealing more
details about this player and describing its method. Therefore,
we provide a short description. The Sancho player has imple-
mented a piece detection method, and after estimating piece
values, it uses this information to help Monte Carlo searching.
The algorithm detects predicates that may represent a piece
and correlates the number of such pieces with the goal score.
If a correlation is above certain threshold, the player treats the
predicate as a piece. A number of random playouts are run to
establish the pieces values. The obtained piece value depends
on its mobility and correlation between a number of pieces
and playouts results.

A heuristic evaluation function using pieces values is used
as the initial score for a new node added to UCT tree. The
node’s visit counter is initialized according to some weight
function. After new node creation process, all simulations and

score’s updates behave like in the standard UCT algorithm.
This makes that the initial distribution of playouts heavily
depends on heuristic knowledge. If the initial heuristic reflects
the real importance of the pieces, it helps to guide search into
promising parts of the tree and not to waste simulations. If
not, the values of the scores contradictory to the observations
are gradually revised by successive simulations.

To complement the technical information above, we also
describe our RBgPlayer specification. The program is written
in C# using .NET Framework 4.5, and run on single machine
with Intel(R) Core(TM) i5-2410M CPU 2.30GHz 4 cores and
12GB of RAM.

VI. RESULTS

We ran two sets of experiments, one of them using precom-
puted initial weights, while the other used only pure learning
to determine proper weights. In the latter case, all material
features weights were initially set to 1, while all positional
features weights were set to 0. We tested our RBgPlayer
against Dumalion, Sancho without piece detection, and Sancho
with piece detection enabled. We used two time setups: one
similar to those which are used during GGP competitions
for large games, with 3 minutes startclock and 1 minute
playclock; and another one with shorter times (60 seconds
startclock, 20 seconds playclock) used only for experiments
with precomputed weights. To test every setup we ran 20
matches (10 with RBgPlayer as white, and 10 as black).

Table II shows the results of experiments with RBgPlayer
using precomputed weights, while Table III contains the results
of with pure learning experiments. A single result consists of
three numbers: the first is the percent of RBgPlayer wins, the
second the percent of draws, and the third is the percent of
RBgPlayer loses. The last column contains the results against
Sancho with piece detection on, while the column before, with
piece detection off.

TABLE II. PRECOMPUTED INITIAL WEIGHTS (WINS:DRAWS:LOSES
PERCENT)

.

Game
startclock,

Dumalion
Sancho

playclock det. off det. on

Chess
180, 60 100 : 0 : 0 100 : 0 : 0 15 : 5 : 80
60, 20 100 : 0 : 0 95 : 5 : 0 25 : 5 : 70

Asymmetric Los Alamos
180, 60 100 : 0 : 0 100 : 0 : 0 50 : 0 : 50
60, 20 100 : 0 : 0 100 : 0 : 0 75 : 0 : 25

Gardner
180, 60 100 : 0 : 0 40 : 5 : 55 20 : 15 : 65
60, 20 100 : 0 : 0 45 : 10 : 45 25 : 5 : 70

Escort Breakthrough
180, 60 55 : 20 : 25 75 : 10 : 15 35 : 30 : 35
60, 20 35 : 15 : 50 85 : 10 : 5 35 : 5 : 60

TABLE III. PURE LEARNING (WINS:DRAWS:LOSES PERCENT)

Game startclock,
Dumalion

Sancho
playclock det. off det. on

Chess 180, 60 100 : 0 : 0 95 : 0 : 5 0 : 0 : 100

Asymmetric Los Alamos 180, 60 100 : 0 : 0 80 : 0 : 20 5 : 0 : 95

Gardner 180, 60 95 : 0 : 5 10 : 0 : 90 15 : 10 : 75

Escort Breakthrough 180, 60 15 : 55 : 30 0 : 40 : 60 5 : 20 : 75

At first, one may observe that the table reflects precisely
the playing level of GGP programs, which shows that Regular



Boardgames form a good base for a testing class for measuring
the performance of GGP players. An expected trend observed
in the table is that the GGP agents are playing worse as
the game tree size grows. Escort Breakthrough has a larger
branching factor than Gardner at the beginning, but after that,
both values are similar. However the tree depth in Break-
through is much smaller, which means random MCTS playouts
are nearly two times faster achieving faster convergence and
leading to definitely better results. The differences between
Gardner, Los Alamos and Chess lie both in branching factors
and game tree depths. These differences are reflected in our
results. We can also observe that smaller timeouts, combined
with game tree depth, favor RBgPlayer. It seems that in such
games with complex rules short lookahead based on heuristic
position evaluation leads to better results than small number
of simulations (especially in an endgame phase, which is often
crucial).

If, as our main reference point, we take GGP champion
Sancho in the mode with piece detection off, we see that
Gardner is the game with probability of winning close to equal
for this player and the dedicated regular boardgames player.
In slightly larger Los Alamos the GGP player chances to win
plummet to zero. Gardner is still a complex, but relatively
small game in human terms. A tempting conclusion, that any
larger game leads to dramatic drop in GGP players efficiency,
is not encouraging in terms of domain success. However,
the fact that GGP players behave with every game like they
are seeing it for the first time should be taken into account.
Comparing the efficiency of Sancho against RBgPlayer without
precomputed weights we can see a significant improvement in
GGP agent scores. Without game-specific knowledge, RBg-
Player has too little time to gather reliable information about
piece behavior to construct an accurate evaluation function.

The use of heuristic knowledge about piece mobility
makes Sancho player with piece detection behave more like
a dedicated player. Note that Sancho possesses only very
limited knowledge. It does not detect board or other concepts
but pieces. Moreover, there may be games where pieces are
not detected properly because of the fixed threshold in the
predicate-score correlation test. Also, weight values may be
challenged as based only on random simulations. In spite of all
these, this limited knowledge combined with engineering effort
to make player computationally efficient, turns out to be more
then enough to have clear advantage over RBgPlayer in most
experiments. Initial heuristic guidance over the game tree to
explore its most promising areas without costly computations,
put Monte Carlo ahead of min-max with simple material and
positional evaluation.

It should be also pointed out that the influence of heuristic
evaluation strongly depends on the game tree size. In small
games, sampling quickly dominates the initial heuristic values,
while in large ones with computationally expensive simula-
tions, heuristic evaluation remains dominant. Since UCT needs
help exactly for large games this is very welcome behavior.

There is however no assurance that the method used by
Sancho is accurate and safe from producing wrong results.
What we have learned from our experiments, the weight
assignment algorithm seems to have a tendency for overesti-
mating the values of some types of pieces. It seems also to have
problems with inequitable initial positions. For Asymmetric

Los Alamos the heuristic does not work so well as in other
cases.

A. Feature weights

Table IV shows the comparison between the values of
pieces (material features weights) calculated by RBgPlayer’s
initial weight computation algorithm and Sancho’s simulation-
based algorithm. For every game, the obtained values have
been normalized by the assumption that the pawn’s value is 1.
The values calculated by RBgPlayer are sums of the scores
based on mobility and goal conditions. The goal condition
part has nonzero value only for pawns and kings, and in such
cases this value is put in the braces (thus for chess the pawn
score 1.0 is obtained by the goal condition evaluated for 0.38
and the mobility evaluated for 0.62). The Sancho player has
made different evaluations for the Asymmetric Los Alamos
rook depending on the side: for white the weight is 1.5, while
for black it is 1.2.

TABLE IV. PIECES VALUES

Piece
Chess Assymetric Los Alamos Gardner

RBg Sancho RBg Sancho RBg Sancho

Pawn 1 (0.38) 1.00 1 (0.47) 1.00 1 (0.54) 1.00

Knight 2.50 3.69 1.97 2.80 1.57 4.34

Bishop 3.00 2.69 2.01 1.40 1.51 1.24

Rook 4.18 2.59 2.88 1.5/1.2 2.20 1.25

Queen 7.16 5.73 4.90 3.30 3.70 2.16

King
161.60

2.99
150.46

2.00
138.59

1.12
(158.48) (147.71) (136.24)

Although weights assigned to pieces differ in both ap-
proaches, they mostly coincide with the human judgment of
which piece type is better. Scores relative to the pawn are
usually smaller then given by humans (e.g. in chess), but this
is a result of changes in the rules of the game. The fact, that
pawn reaching the opponent’s backrank causes an instant win
increases the pawn’s weight. The Sancho player has a tendency
to overrate knights, and in Asymmetric Los Alamos this even
influences rook score, as the simulations probably discover
knight+rook as a complementary combination of pieces.

In Escort Breakthrough, the precomputed heuristic grants
a very high value to the king, as it is the only piece allowing
victory. This prevents RBgPlayer from losing its king to a
much greater extent than in the pure learning case. Also,
because without a king, a match normally goes on until
turnlimit is reached, the small search horizon is enough to
compete against UCT, which requires full length playouts.

B. Learning

The main difference between the process of learning
weights during our experiments and that presented in [8], [9] is
that in the GGP scenario in which we work, the weights values
are updated from turn to turn, and a new game always begins
without knowledge about previous experience. Thus the setup
is more difficult, but there are also advantages. For example,
our player has possibilities to adapt to the current situation.

It is well known that, e.g. in chess, weights of some pieces
are different depending on the game phase (beginning, middle,
endgame) or other pieces on board (e.g. two bishop bonus



which is usually a part of chess evaluation function). In the
learning setup basing on material and positional evaluation, it
is impossible to embed such nuances. However, as learning
proceeds after every turn, the weights can automatically adapt
to better suit to the current situation. During our experiments,
we have observed that material evaluation for pieces was
being changed between turns to reflect their power in the
current state. A practical problem is time for such learning
to be sufficient. In chess experiments, during the startclock,
RBgPlayer was able to perform 10-30 learning simulations,
and as the vast majority of them ended with a draw, no really
significant weight changes were done.

This is not a problem in the precomputed initial weight
values scenario, but in the learning only scenario, piece values
in chess began usually to differentiate around the 8th-12th
turn. Earlier, all piece types were evaluated as nearly equal in
strength. During the middle game only a few chess simulations
can be done during the learning phase. The number of middle
phase simulations in Garder was about 15-20. This is not
enough to obtain the best suited values, but enough to slightly
push the weights in the right direction, and this works well in
the scenario with precomputed initial weights. An interesting
issue concerns endgame situations with some unused pieces. In
this case, such pieces tend to have negative weights, which is
often reasonable, because they block mobility of other pieces
(although still contradictory with human evaluation of such
situations). This occurs only when weights depend on pure
learning. With precomputed weights, the values are larger and
all material features are more stable.

C. Other Issues

An interesting aspect of a dynamically learned evaluation
function is the usage of transposition tables. Although trans-
position tables speed up computations, the retrieved values are
often outdated due to reevaluation of weights. However, the
value stored for a state has a search depth level assigned,
and it is used only if the current searching depth is not
greater then that. This ensures that, during the move searching
phase, the state evaluations will be recomputed using the
current heuristic, and they will override values stored during
shallow learning playouts. Experimentally, we did not observe
disadvantages of using transposition tables, while using them
usually results in reaching a deeper level in iterative deepening
alpha-beta as used by RBgPlayer.

Another important issue is GDL code efficiency. In GDL,
there are many ways to encode a single game, and the way it is
done, has an essential impact on the number of computations
needed to calculate a state, and so, on the performance of
GGP players. During our experiments, we have been using
the optimized style of codifying chess-like games, presented
by Alex Landau the author of the Alloy GGP Player [25]. At
the beginning we had been using a less efficient coding style,
which resulted in larger number of losses by Sancho (in some
cases even twice).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we assess the progress of General Game
Playing by comparing some state-of-the-art GGP players with
an exemplary program dedicated to play in a smaller class
of games called Simplified Boardgames. We have developed
a min-max based player and confront it with two top GGP
players on a number of games. Our player takes advantage of
the fact that the game played is always a regular boardgame
and evaluates game positions using material and positional
evaluation functions, with weights learned during the play.

The obtained results lead to the conclusion that GGP
programs play at an acceptable level on smaller games. Due to
the careful, efficiency-oriented design, they are able to produce
millions of simulations which pay-off when using MCTS
methods. However, this approach disappoints when a game tree
becomes bigger, in which case a relatively simple knowledge-
based approach achieves better results. The experiment shows,
where a limit of GGP players capabilities lies.

The outstanding results of Sancho with implemented
boardgame detection demonstrate the benefit of having knowl-
edge about essential game properties. This contradicts con-
clusions formulated in [26]. Based on this observation, we
think that a key to GGP players improvement is a proper
game type detection. It is worth noting that from the very
beginning of GGP the natural division of games into single
player and multiplayer is applied, and nearly all GGP players
use special strategies for single player games (DFS, reduction
to ASP [27]), different from those for multiplayer ones.

It may appear somewhat against the idea of generality,
but defining GDL class as a union of specialized subclasses
seems to be a promising research direction for improving GGP
players efficiency. Such an approach shifts the burden into the
following tasks: defining the proper set of classes, detecting
game class membership, developing algorithms for particular
classes. A proper class of games should be narrow enough, to
allow players to use specific game type knowledge, but wide
enough to cover a large part of the GDL class. It should be
also possible to detect whether a game belongs to this class
based on the properties of GDL predicates.

It may even be argued that the general approach based on
straightforward UCT heuristics (like MAST, PAST, etc. [11])
and software engineering improvements will reach its limits
soon. Starting to classify games using a multilevel hierarchy,
and introducing a mechanism for detecting game classes seems
unavoidable for getting further progress. It is rather obvious
that, like in Problem Solving, the more general the method
the weaker the performance: a general purpose algorithm will
always be worse than a good algorithm designed specially for
a given task. Of course, detecting game classes may be suitably
combined with general knowledge-based approaches (like that
in [12]).

A. Future Work

In accordance with the long term research goals stated
above, we would like to improve the boardgames detection and
playing algorithms in MCTS GDL-based players. In particular,
we plan to make more efficient use of the knowledge about
pieces in MCTS search.



Another goal is to extend further the regular boardgames
class to cover also exceptional moves used in classical
boardgames such as promotions, castling, en passant, etc. We
plan to do this in a systematic way, without losing the property
that move rules are determined generally by a regular language.
For example, changing piece type after a move, moving more
than one piece simultaneously, or history dependent moves –
all these may be achieved by extending the alphabet.

We also would like to establish the regular boardgames
class as a standard test class for GGP. To enable easy testing,
we are going to provide an automatic translation system from
regular boardgames into GDL (in a manner similar to that
recently proposed for Card Game Description Language [15])
producing efficient GDL code. The present paper may be
considered as the first step in this direction.

Finally, there are several interesting issues about improving
regular boardgames player, including generation of open-
ing/endgame libraries, and using more sophisticated evaluation
function (including e.g. threats counting).
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