
Game Description Language
Compiler Construction?

Jakub Kowalski and Marek Szyku la

Institute of Computer Science, University of Wroc law, Poland
{kot,msz}@ii.uni.wroc.pl

Abstract. We describe a multilevel algorithm compiling a general game
description in GDL into an optimized reasoner in a low level language.
The aim of the reasoner is to efficiently compute game states and per-
form simulations of the game. This is essential for many General Game
Playing systems, especially if they use simulation-based approaches. Our
compiler produces a faster reasoner than similar approaches used so far.
The compiler is implemented as a part of the player Dumalion. Although
we concentrate on compiling GDL, the developed methods can be applied
to similar Prolog-like languages in order to speed up computations.

Keywords: General Game Playing, Game Description Language, Com-
piler Construction

1 Introduction

The aim of General Game Playing (GGP) is to develop a system that can play
variety of games with previously unknown rules. Unlike standard artificial game
playing, where designing an agent requires special knowledge about the game,
in GGP the key is to create an universal algorithm performing well in different
situations and environments. As such, General Game Playing was identified as
a new Grand Challenge of Artificial Intelligence and from 2005 the annual AAAI
GGP Competition is taking place to foster and monitor progress in this research
area [5]. Because of its universal domain, GGP combines multiple disciplines [19]
from searching, planning, learning [1, 4, 12, 15, 17] to evolutionary algorithms,
distributed algorithms and compiler construction [11, 14, 16, 20].

In many General Game Playing systems it is crucial to have an efficient rea-
soning algorithm performing simulations of the game. More computations means
a larger game tree traversed, more gained knowledge, deeper search or more sim-
ulations in Monte Carlo algorithms. In response to these needs, we developed
our compiler. Because of used optimizations, it produces very effective reasoners
which can compute game states faster than other so far known approaches.

The paper is organized as follows. Section 2 provides necessary background
and describes current state of the art. Step by step details of our construction
are presented in Section 3. Section 4 contains overview of experimental results.
We conclude in Section 5.
? This research was supported in part by Polish MNiSW grant IP2012 052272

2 Game Description Language

To develop a general game playing system, there is a need for a standard to
encode game rules in a formal way. For the sake of World Wide GGP Compe-
tition, Game Description Language (GDL) [5, 10] is used. This first-order logic
language based on Datalog has enough expression power to describe all finite,
turn-based, deterministic games with full information, simultaneous moves and a
fixed number of players. By “finite” we mean that the set of possible game states,
and the set of actions (moves) which players can choose in each state should be
finite. Also every match should end after a finite number of turns. Players per-
form actions simultaneously, which means that in each turn all players select
their moves, without knowing the decision of the others. Sequential games can
be simulated by explicit adding some noop move for the players which should
normally wait. Another strong restrictions are that no game element can be
random and all players should have the full information about the game state.
Extension of the GDL called GDL-II [18] removes these limits, but this leads to
a more complicated system where general playing is even harder.

Syntactically GDL is very similar to Prolog. It is purely axiomatic, so there is
no arithmetic or other complex game concepts (like pieces or boards) included,
every such thing must be explicitly stated in the code. GDL is rule based which
means that gaining information about a game state is equivalent to applying
rules and extending the set of holding (true) facts. As example, in listing 1.1, we
show some rules of the game Goldrush from Dresden GGP Server [6].

Listing 1.1. Part of the Goldrush game GDL code.

1 (role Green) (role Red)
2 (in i t (OnMap Green 1 1)) (in i t (OnMap Red 7 7))
3 (in i t (OnMap Obstac le 1 6)) (in i t (OnMap Obstac le 2 4)) . . .
4 (in i t (OnMap (Gold 2) 1 7)) (in i t (OnMap (Gold 1) 3 6)) . . .
5 (in i t (OnMap (Item Bla s t e r 3) 7 4)) . . .
6 (in i t (OnMap (Item Stonep lace r 3) 1 4)) . . .
7 (<= (legal ? r (Move ?nx ?y))
8 (role ? r) (true (OnMap ? r ?x ?y)) (InBoard ?nx))
9 (or (+ ?x 1 ?nx) (− ?x 1 ?nx))

10 (<= (next (OnMap ? r ?x ?y))
11 (role ? r) (does ? r (Move ?x ?y)))
12 (+ 0 0 0) (+ 1 0 1) (+ 2 0 2) (+ 3 0 3) . . .
13 (<= (− ?x ?y ? z) (+ ?y ? z ?x))
14 (InBoard 1) (InBoard 2) (InBoard 3) . . . (InBoard 7)

Predicates that are arguments of init, true and next can be considered as
a minimal set of predicates enough to restore all information about the state,
which we will call as the base predicates. This means that the full game state
(the view of a state) is a set of facts closed under application on the base facts
and the next state is computed based on the previous full state and the players
actions.

This leads us to the notion of the reasoner. This is an essential part of every
player, allowing it to shift the state based on information from the game con-

troller. During competition, the game controller sends to a player only moves
made by all players, so computing the next state, legal moves and so forth should
be made at the player’s side. In other words the reasoner is an implementation
of the game loop (Fig. 1) described by game rules.

base

 init

terminal

 view

does
 next

legal
 view

goal

 view

Fig. 1. Game loop: the view of
a state is computed based on
the current base facts. Then
either game ends or the pro-
gram should wait for actions
of the players and then com-
pute a next base.

2.1 Reasoner Implementations

An efficient reasoner implementation, while not
connected with playing algorithms, is one of the
most important part of a general game player.
This applies to currently dominating simulation-
based approach [3], but also some knowledge
based ([7, 8, 15]) players make benefits from per-
forming game simulations to tune their heuris-
tic evaluation functions [1]. The problem of play-
ing general games is so computationally difficult,
that most of players use distributed architecture
to support parallel computations on many ma-
chines [11, 13]. Complementary approach to par-
allelism is speeding up the process of reasoning
itself. Most common implementations of the rea-
soner are based on prolog engines built into an-

other programming language. The benefit from this approach is that it requires
only syntactic modifications of GDL, so it results in simplicity of implementa-
tion. But using a very general inference engine to compute rules of strictly given
form is a drawback causing lack of computations speed.

The most obvious method of avoiding this is compiling GDL to other lan-
guage. Straightforward rewriting GDL code to C++ language, done in a top-
down manner was described in [20] and Java version of this approach can be
found in [13]. On the other hand, the method of forward chaining GDL to OCaml
compilation with some optimizations was proposed in detail in [14]. Other ap-
proaches to make reasoning faster contains usage of propositional networks [2]
and instantiating games to use binary decision diagrams [9].

In the following section we will describe in details our method of construct-
ing GDL compiler. We use combination of a few ideas such us careful ordering
of computations, optimizing control flow and designing dedicated structures to
perform queries. All of these, result in a significant improvement in efficiency
compared to the methods used before.

3 Compilation

Our compiler takes as an input the game rules written in GDL and outputs
a structure called compilation plan, decoding the computation strategy for the

reasoner. The plan can be then translated to some efficient low-level program-
ming language like C/C++. In this section we describe all major steps of con-
structing the plan. Our general aim is to achieve better efficiency of computing
game states by the resulted reasoner. Looking to a process of playing GDL game,
it can be considered as an usage of a database. The predicates are containers with
some facts and we have to perform reading (queries) and writing (insertions) to
these containers. Our method uses such techniques as flattening domains, opti-
mizing data structures for containers, reordering operations, which are mostly
apart from the target language.

3.1 Calculating Domains and Flattening

The first thing we need to do, after parsing GDL to some abstract tree struc-
ture, is to compute domains of the predicates’ arguments. Let P be a predicate.
Because predicates in GDL can be nested, every occurrence of P form a tree of
its arguments. In that case we can describe such occurrence as a function from
vectors encoding positions in tree to arguments symbols, so e.g. position of 3

in OnMap (Item Blaster 3) 7 4 can be described as 〈0, 2〉 (positions at every
tree level are enumerated from 0). We want to calculate domain as a function
which takes a pair of a predicate P and a tree position p̃ (possible for P), and
returns a set of symbols that can occur in this position. Such domains are in
fact a supersets of the real predicates’ domains and also lose information about
dependencies between arguments. However this is enough for the further calcu-
lations.

The method proposed in [9] requires computing set of dependencies where
(P, p̃) . (Q, q̃) (. is “depends on” relation) if and only if there exists a rule with
P in the head and Q in the body, where at the positions p̃ and q̃ respectively, the
same variable occurs. This means that every symbol in domain of (Q, q̃) should
be also in domain of (P, p̃). In this approach calculating domains means resolving
dependencies by extending appropriate domains until a fixpoint is obtained.

We improved this method to handle nested predicates and compute smaller
domains. In our case extending domains include also domains of every subtree
of variable occurrence. If (P, p̃) . (Q, q̃) then for every q̃′′ which has q̃ as a prefix
(so q̃′′ = q̃ + q̃′ for some position vector q̃′), also (P, p̃ + q̃′) . (Q, q̃′′). These
dependencies must be dynamically computed because during the algorithm new
predicates positions can be found.

Instead of . we use relation .R where (P, p̃) .R (Q, q̃) if dependency is cre-
ated by rule R in CNF form (note that every game described in GDL can be
easily converted do CNF). Let � be the operator of domain conjunction defined
as (� d1 . . . dn) v = d1(v) ∩ . . . ∩ dn(v). For every rule R we create set πR

(P,p̃)

containing every (Q, q̃) such that (P, p̃) .R (Q, q̃) holds. Then for every πR
(P,p̃)

we extend domain of (P, p̃) by � di for di ∈ πR
(P,p̃). This simulates conjunction

which takes place in GDL rules and prevent domains from containing symbols
unused in practice. The procedure loops for every pair (P, p̃) and finishes when
a fixpoint is found.

To illustrate this algorithm, consider a subset of game rules shown in Listing
1.1. Calculating domains based on this example appoints the following domain
of predicate OnMap:

(OnMap, 〈0〉)→ {Green,Red,Obstacle}
(OnMap, 〈0, 1〉)→ {Gold,Item}
(OnMap, 〈0, 2〉)→ {1,2,Blaster,Stoneplacer}

(OnMap, 〈0, 3〉)→ {3}
(OnMap, 〈1〉)→ {1,2,3,4,5,6,7}
(OnMap, 〈2〉)→ {1,2,3,4,5,6,7}

Because of arguments nesting, the number of leaves in parse tree can vary
for one predicate. But to effectively perform queries, we need to have predicates
without nesting and with a fixed arity. To achieve this, we developed a notion
of flattened predicate and algorithms to convert standard (nested) predicate to
flattened form and to perform reversed conversion.

The arity of a flattened predicate is the number of leaves in the widest of
arguments assignments found in domain calculating phase. Tighter occurrences
of the predicate are then stretched using special non-GDL symbol #nil, and
each variable occurrence is extended by introducing new variables with added
suffixes to avoid ambiguity. From now on, each mentioned predicate is flattened.
Conversion from flattened predicate to its standard GDL form is necessary when
the player needs to send a move to the game controller, having a flattened move
given by the reasoner. As we made proper algorithms, we can stand:

Lemma 1. For every occurrence of a valid GDL predicate with a fixed domain,
there exist its unique flattened form. There exists an algorithm that converts
these forms.

A small part of flattened Goldrush game is shown in Listing 1.2 as an exam-
ple. As it shows at line 10, it can create rules with unbound variables, but the
values of these variables are explicitly set to #nil during further calculations.

Listing 1.2. Flattened GDL code.

2 (in i t (OnMap Green #n i l #n i l 1 1)) . . .
3 (in i t (OnMap Obstac le #n i l 1 6)) . . .
4 (in i t (OnMap Gold 2 #n i l 1 7)) . . .
5 (in i t (OnMap Item Bla s t e r 3 7 4)) . . .
6 (in i t (OnMap Item Stonep lace r 3 1 4)) . . .

10 (<= (next (OnMap ? r0 ? r1 ? r2 ?x0 ?y0))
11 (role ? r0) (does ? r0 (Move ?x0 ?y0 #n i l)))

3.2 Predicates Dependency Graph and Layering

Let say that a predicate P depends on Q if there exists a game rule R such that P
is the head of R and the body of R containsQ. We consider the dependency graph,
which is a directed graph representing the dependency relation of predicates.

After the complete dependency graph is built, it is split up to subgraphs rep-
resenting each of the game phases, depending on what we are going to compute.

The phases are: init, term, goal, legal and next and they correspond to the solid
arrows from the game loop visualization (Fig. 1), where term, goal and legal
belong to view. In such a way, the dependency graph gives us information about
the predicates usage.

We can get rid of all predicates that are not needed to compute any of legal,
terminal, goal, next. Constant predicates can be fully precomputed during the
initialization phase and they stay unchanged during the rest of the game. These
and base predicates belong to the init phase. The predicates reachable in the
reversed dependency graph from terminal, goal, legal and next belong to
corresponding phases respectively. There is one exception: predicates reachable
from both goal and legal are put in the term phase. We note that it is not nec-
essary required to compute the goal predicate while the state is non-terminal.
This loses possible information about scores in non-terminal states, but it saves
computation time and in Monte Carlo approach simulations go to the end any-
way, so checking the goal values in non-terminals can be avoided.

All proper GDL games must be stratified, which means that for all predicates
P and Q if P depends on not Q then P must be in a higher stratum, and all facts
of a lower stratum should be deducted before deducting the upper stratum starts
(which is always possible). This mechanism allows to treat GDL deduction as
continuously adding facts to a database, without worrying of withdrawing them
if computations are made in the proper order. In a top-down approach right
computation order is for free, but in a bottom-up ordering is more flexible and
can lead to better efficiency.

Despite stratification as a result of negations placement, we consider layering.
This is a more general and a more complex approach based on dependency
graphs. Each layer corresponds to a set of strongly connected components of the
dependency graph. There are two types of layers:

Acyclic layer is a set of predicates such that there is no path in the depen-
dency graph between any two predicates from this set. This means that, if only
all the lower layers are computed, all the rules with these predicates in the head
can be computed simultaneously and only once.

Cyclic layer is a set of predicates that are reachable from any other from this
set (by using at least one edge). In this case the number of rules applications
to deduct these predicates is unknown, and computations must take place until
a fixpoint is reached (no new fact is added after an iteration).

Partitioning of the dependency graph to layers should be done in a way,
that acyclic layers should be as large as possible, and cyclic layers as small as
possible (which reduces number of computations). Currently we create the layers
incrementally from the nodes without ingoing edges (so the first layer contains
all “leaves” of graph). If there is a choice which layer cyclic or acyclic should be
considered as a lower, the lower (first to compute) goes cyclic one.

3.3 Defining the Rules Computation Order

Mapping from predicates to layers does not make ordering of rule computation
unambiguous. Consider a rule R and let LR

h be the layer where the head of the

4

1

23

5

6

7

8

9

10

Score

role

Turn Equipment OnMap

*10 InBoardNextTurn Succ

+>

-

DiagonalMove

GoldAtMapUnderStone

terminalgoal

DistinctMove

ChangedScore

Fig. 2. Dependency graph of the game Goldrush (predicates legal and next are omit-
ted due to visibility) with cyclic layers marked with dashed border.

rule belongs, and let LR
b max be the maximal (the highest) layer of predicates in

body of R. This means that R must be computed before layer LR
h + 1 and after

layer LR
b max, so the rule can be placed in any layer between these values. An

exceptional situation is when LR
h = LR

b max, which happens only for some rules
from cyclic layers. In this case rule placing is unambiguous.

Intelligent rule placement can lead to some speed improvement in two main
cases. First, when the predicate in the head of a rule is from a cyclic layer but
the body is not (LR

h < LR
b max) then the rule can be computed cheaper, because

it is computed only once within a lower (assuming non cyclic) layer. Sometimes
even special layers for such rules can be created. The second reason to move rules
is that in some layers in admissible range there are rules similar in construction
and some sharing computations between them can be done.

3.4 Filter Trees

With computed order of the rule computations we can produce the final plan.
In such a plan the symbols and predicates get their unique id, and each predi-
cate has bound information about its (flattened) domain and container type. To
appoint exact ordering of game state computations, structures called filter trees
are created.

Filter trees contains nodes, which can have child nodes. The whole compu-
tation process is just traversing the tree and performing actions according to
the types of nodes. During computation a set of local variables and a set of
containers are maintained. In the root the sets are empty. A variable (similarly
container) defined in a node has scope bounded to the children nodes. A variable
defined in a parent node is bound in the children and cannot change its value.
The nodes have the following types:

– Sequence A node with many children which should be executed in the order.
– Query Queries the specified container for a given subset of facts. There

can be either symbols or bound and unbound variables. For each fact in

the container which matches the query, define unbound variables by setting
the values to match the fact and go into the child node. For optimization
purposes a query can have additional explicit domain filter.

– Accept Inserts a fact to the specified container. All of the variables used in
an insertion must be bound. If a new fact is added, a special repeat flag is
set to inform a cyclic layer to be repeated.

– Repeat Repeats computation of its subtree until the repeat flag is unset. The
flag is checked and cleared each time between iterations.

– If It has three children. The child called test is executed first until it is
finished or a special Return node is reached. If Return was reached the child
true is executed, otherwise false.

A GDL rule can be simply transformed to a filter tree without any significant
modifications. A conjunction is simply nested children, an alternative can be
decoded as Sequence and negated terms can be put in If filter with Accept
in false subtree. Distinct between two variables is converted to a Query with
unspecified container but with a list of distinct variables, while distinct with a
variable and a symbol is just Query with reduced variable’s domain.

A careful way of constructing filter trees can reduce much of computations.
At first, if the same query occurs in two rules in the same layer it can be shared.
Because every nested query can potentially cut out variable domains, the right
order of nested queries can also improve efficiency. The last main optimization
takes place when all variables from the heads of the rules are already defined in
some query. Since the added fact is fully defined it remains only to check if the
rest of queries can be satisfied. This can be realized by putting into If the rest
nested queries, so a single positive pass through them is sufficient to immediately
return and insert a fact.

We observe that only the values of variables which can reach Insert or Return
node are necessary to be considered. We can restrict the domain in advance in
queries defining these variables, instead of filtering them by nested queries.

We create five filter trees, one for each of the phases. An example filter tree
for next phase of the game blocker [6] is presented in Fig. 3. Creating the filter
trees finishes our construction, allowing generation of the final code.

3.5 Data Structures for Containers

Queries can have very different shapes. They consist of a predicate and a fixed
number of arguments, depending on the predicate’s arity. The arguments can be
constants or variables. The simplest are those asking about existence of a partic-
ular fact like cell 1 3 b. More complicated are queries mixing both constants
and variables, including bound variables like in cell ?x ?x ?t. Efficiency of
performing queries depends on the data structure used to implement the con-
tainer for a given predicate. An elementary analysis can be used to estimate
query and insert costs for various data structures. Although more deep opti-
mizations can take care of the proportion between queries and insertions, and
occurrences of query shapes.

Sequence

(cell ?m ?n b) (cell ?m ?n ?x)
?x in {blk, crosser}

If

(does blocker (mark ?m ?n))

test

(next (cell ?m ?n blk))

true

If

false

(does crosser (mark ?m ?n))

test

(next (cell ?m ?n crosser))

true

(next (cell ?m ?n b))

false

(next (cell ?m ?n ?x))

Fig. 3. Next filter tree of the game blocker. Box nodes represent Queries while ellipses
are Accept filters. Every test branch of If ends with unmarked Return node.

In our compiler we use a few different data structures. We describe them
here and perform a simple efficiency analysis. Consider a container and assume
that d is the arity of facts in the container. Then let c1, . . . , cd be the sizes of the
domains of the arguments, that is the i-th argument can take one of ci possible
values. Thus the container can hold at most C =

∏d
i=1 ci facts. Assume that

n is the number of currently stored facts in the container. We assume that d is
a fixed constant and comparing any two values (symbols) takes O(1) time.

Querying a subset of facts in the container takes time at least Ω(s), where
s is the size of the queried subset, because of further processing these facts. For
simplicity we do not consider the cases with duplicated unbound variables in
a single query, which are also rare cases. Thus an optimal data structure would
take O(s) time performing a query, and O(1) time performing an insertion.
A special careful should be taken for querying for a particular fact, because such
an operation is often required during insertions to prevent storing duplicated
facts in the container.

One of the simplest data structures is a standard dynamically-sized vector.
Inserting to a vector takes O(1) time, but querying for a particular fact or a
subset of facts can take O(n) time in the worst case. In opposition to the vector
there is a complete lookup array with the fixed size C. Each allowed fact has
a fixed position in the array storing a flag indicating if the fact is in the container.
Insertion to an array, as well as querying for a particular fact, takes O(1) time.
However querying for a larger subset of facts can take O(C) time, depending
on the number of possible facts matching the query. Thus vectors are better for
larger domains and smaller number of stored facts, and arrays conversely.

Hash and tree sets are quite efficient for insertions and querying for a partic-
ular fact, which take O(1) time in a hash set and O(log n) in a balanced tree set
with lexicographically ordering of facts. However querying for a subset of facts
may take O(n) in a hash set, and as well in a tree set if the first argument is an
unbound variable.

A trie is a more complex tree-like structure. Levels correspond to the argu-
ments. At the level h, each node contains dh pointers to nodes at the height
h + 1 (except the last). These correspond to all dh allowed values of the h-th
argument. A fact is encoded by a path from the root to a leaf. A pointer is null
if there are no facts with the corresponding value. A trie grows as more facts
are added. An insertion takes O(

∑d
i=1 ci) time in the worst case (empty trie),

because we must create a node at each level. Querying a particular fact takes
O(1) time. Efficiency of a trie in querying for a specified subset depends on the
order of the arguments. A query can cost from O(s) time when the constant
arguments are at the beginning, up to O(n) time when they are at the end. We
consider tries as an universal balanced structure, since it performs quite well in
most cases.

With an assumption that we have a constant number of query shapes, we
developed two nearly optimal composed structures. Composed structure consist
of a set of other structures made especially for efficient maintaining of different
query shapes. The first such structure is the trie-composed structure based on
tries, and the second is the tree-composed structure based on balanced tree sets.
It seems that the trie-composed structure is better, because queries usually occur
more frequently than insertions, and it generally has a lower constant factor.

Lemma 2. The trie-composed structure takes O(s) time for a query and O(c1+
. . .+ cd) time for an insertion.

Lemma 3. The tree-composed structure takes O(s + log n) time for a query
and O(log n) time for an insertion.

3.6 Final Code Generation

We have implemented GDL compilation to C++. The compiled reasoner is just
a module allowing to maintain game states. In particular the phases are functions
initializing the reasoner and computing the init state, computing a view state
given a base state, or computing a next base state given a base state, view state
and moves of the players. It also provides an interface for answering if a state is
terminal, getting the goal or the legal moves.

Each node of the filter tree is directly inlined in the code. In this way many
technical optimizations are possible by using the context, since for example, each
query can have different set of domains for the variables and we can perform
explicit iteration through them.

4 Experimental Results

We have implemented the compiler as a Java program producing a reasoner in
C++ as output. Our benchmark results are presented in Table 1. The resulted
reasoners were compiled by g++. The main program performed uniformly ran-
dom simulations of the games. Comparative reasoners uses ECLiPSe Prolog sys-
tem. The benchmarks were done on Intel(R) Core(TM) i7-3610QM 2.3GHz with
8GB of RAM.

Table 1. The numbers of performed random simulations and visited game states per
second for different games.

Game
The reasoner of Dumalion Prolog

Compilation Simulations States Simulations States

Tic-Tac-Toe 0.736 s 331,647 2,860,888 2,076 15,829

Blocker 0.645 s 194,628 1,729,674 1,020 8,049

Connect Four 0.857 s 15,092 353,283 287 6,424

Breakthrough 1.074 s 3,086 200,901 55 3,553

Checkers 10.482 s 211 21,291 12 1,186

Skirmish 7.810 s 71 7,114 5 518

Although differences between computation speed between a simple Prolog
engine and the optimized and compiled code are outstanding as expected, an
interesting observation is that the improvement factor is less for more compli-
cated games (such a tendency is also visible in benchmarks from [13, 14]). In
other hand, while the improvement factor is smaller, the numbers of performed
simulations and visited states were increased several time, and this is especially
crucial for very difficult games when computing states is hard and even small
speed up can give a big advantage.

Because of hardware differences and chosen method of benchmarking it is
hard to make a straightforward comparison between our compiler and other
approaches described in [13, 14, 20]. But after recalculating all the results to
a common base simulations over a second, a roughly comparison shows that the
reasoner of Dumalion can compute simulations from 2 to about 10 times faster
(depending on the game) than the compiling methods described so far, and from
10 to 160 times faster than a standard Prolog engine.

5 Conclusions and Future Work

Using a compiler generator to create reasoners requires far more work than
running a Prolog engine on syntactically changed GDL code, but the benefit in
computation speed is significant. We mention here a few of inconveniences in
our method. At first the produced reasoner must be compiled into a native code.
This can take quite long if the game is complicated. The second problem is that
we lose all the structure information, for example we cannot ask about a specified
predicate defined in the original GDL, since it is possible that the corresponding
container does not exist at all due to optimizations. Another drawback is that
the process of compilation itself make the whole GGP system more complicated
and harder to handle, especially if it should support parallelism.

There are many other ways of further optimizations of the plan. They include
introducing new temporary containers, reordering of arguments, more careful
selection of container types, reordering of queries and splitting them. As the
future work, we have plan to construct GGP architecture with the aim of efficient
maintain compiled code in a scalable, parallel system.

References

1. J. Clune. Heuristic Evaluation Functions for General Game Playing. In AAAI,
pages 1134–1139. AAAI Press, 2007.

2. E. Cox, E. Schkufza, R. Madsen, and M. Genesereth. Factoring General Games
using Propositional Automata. In Proceedings of the IJCAI Workshop on General
Game Playing (GIGA’09), 2009.

3. H. Finnsson and Y. Bjornsson. Simulation-based Approach to General Game Play-
ing. In AAAI. AAAI Press, 2008.

4. H. Finnsson and Y. Bjornsson. CadiaPlayer: Search-Control Techniques. KI,
25(1):9–16, 2011.

5. M. Genesereth, N. Love, and B. Pell. General game playing: Overview of the AAAI
competition. AI Magazine, 26:62–72, 2005.

6. M. Gunther and S. Schiffel. Dresden General Game Playing Server. http://

ggpserver.general-game-playing.de.
7. S. Haufe, D. Michulke, S. Schiffel, and M. Thielscher. Knowledge-Based General

Game Playing. KI, 25(1):25–33, 2011.
8. S. Haufe and M. Thielscher. Pushing the Envelope: General Game Players Prove

Theorems. In Proceedings of the Australasian Joint Conference on Artificial Intel-
ligence, volume 6464, pages 1–10, 2010.

9. P. Kissmann and S. Edelkamp. Instantiating General Games Using Prolog or
Dependency Graphs. In KI 2010: Advances in Artificial Intelligence, volume 6359
of LNCS, pages 255–262. 2010.

10. N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. General Game
Playing: Game Description Language Specification. Technical report, Stanford
Logic Group, 2008.

11. J. Mehat and T. Cazenave. A Parallel General Game Player. KI, 25(1):43–47,
2011.

12. D. Michulke and M. Thielscher. Neural Networks for State Evaluation in Gen-
eral Game Playing. In Machine Learning and Knowledge Discovery in Databases,
volume 5782 of LNCS, pages 95–110. 2009.

13. M. Möller, M. Schneider, M. Wegner, and T. Schaub. Centurio, a General Game
Player: Parallel, Java- and ASP-based. KI, 25(1):17–24, 2011.

14. A. Saffidine and T. Cazenave. A Forward Chaining Based Game Description Lan-
guage Compiler. In IJCAI Workshop on General Intelligence in Game-Playing
Agents (GIGA’11), pages 69–75, 2011.

15. S. Schiffel and M. Thielscher. Fluxplayer: A Successful General Game Player. In
Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07),
pages 1191–1196. AAAI Press, 2007.

16. S. Sharma, Z. Kobti, and S. Goodwin. General Game Playing with Ants. In
Simulated Evolution and Learning, volume 5361 of LNCS, pages 381–390. 2008.

17. S. Sharma, Z. Kobti, and S. Goodwin. Knowledge Generation for Improving Sim-
ulations in UCT for General Game Playing. In AI 2008: Advances in Artificial
Intelligence, volume 5360 of LNCS, pages 49–55. 2008.

18. M. Thielscher. A General Game Description Language for Incomplete Information
Games. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
994–999. AAAI Press, 2010.

19. M. Thielscher. General Game Playing in AI Research and Education. In KI 2011:
Advances in Artificial Intelligence, volume 7006 of LNCS, pages 26–37. 2011.

20. K. Waugh. Faster State Manipulation in General Games using Generated Code.
In IJCAI Workshop on General Game Playing (GIGA’09), 2009.

