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Abstract In this paper we give the details of our new algorithm for finding minimal reset words
of finite synchronizing automata. The problem is known to be computationally hard, so our
algorithm is exponential in the worst case, but it is faster than the algorithms used so far and it
performs well on average. The main idea is to use a bidirectional BFS and radix (Patricia) tries
to store and compare subsets. A good performance is due to a number of heuristics we apply
and describe here in a suitable detail. We give both theoretical and practical arguments showing
that the effective branching factor is considerably reduced. As a practical test we perform an
experimental study of the length of the shortest reset word for random automata with up to
n = 350 states and up to k = 10 input letters. In particular, we obtain a new estimation of the
expected length of the shortest reset word ≈ 2.5

√
n− 5 for binary automata and show that the

error of this estimate is sufficiently small. Experiments for automata with more than two input
letters show certain trends with the same general pattern.

Keywords Synchronizing automaton, synchronizing word, Černý conjecture

1 Introduction

We deal with (complete deterministic) finite automata A = 〈Q,Σ, δ〉 with the state set Q, the
input alphabet Σ, and the transition function δ : Q × Σ → Q. The action of Σ on Q given
by δ is denoted simply by concatenation: δ(q, a) = qa. This action extends naturally to the
action qw of words for any w ∈ Σ∗. If |Qw| = 1, that is, the image of Q by w consists of
a single state, then w is called a reset (or synchronizing) word for A, and A itself is called
synchronizing. In other words, w resets (synchronizes) A in the sense that, under the action of
w, all the states are sent into the same state. The synchronizing property is very important,
because it makes the automaton resistant to errors that could occur in an input word. After
detecting an error a synchronizing word can be used to reset the automaton to its initial state.
Synchronizing automata have many practical applications. They are used in model-based testing
(Broy et al, 2005), robotics (for designing so-called part orienters) (Ananichev and Volkov, 2003),
bioinformatics (the reset problem) (Benenson et al, 2003), network theory (Kari, 2002), theory
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of codes (Jürgensen, H., 2008) etc. The concept of synchronization appears also in other settings,
such as synchronized data flow machines (Xue et al, 2000).

Theoretical research in the area is motivated mainly by the Černý conjecture stating that
every synchronizing automaton A with n states has a reset word of length ≤ (n− 1)2. This con-
jecture was formulated by Černý in 1964 (Černý, 1964), and is considered the most longstanding
open problem in the combinatorial theory of finite automata. So far, the conjecture has been
proved only for some special classes of automata and a general cubic upper bound (n3−n)/6 has
been established (see Volkov (2008) for an excellent survey of the results). Using computers the
conjecture has been verified for small automata with 2 letters and n ≤ 11 states (Kisielewicz and
Szykuła, 2013) (and with k ≤ 4 letters and n ≤ 7 states (Trahtman, 2006); see also (Ananichev
et al, 2010, 2012) for n = 9 states). It is known that, in general, the problem is computationally
hard, since it involves an NP-hard decision problem. Recently, it has been shown that the problem
of finding the length of the shortest reset word (the reset length, in short) is FPNP[log]-complete,
and the related decision problem is both NP- and coNP-hard (Olschewski and Ummels, 2010)
(cf. also (Berlinkov, 2010) and (Martyugin, 2009, 2011)). On the other hand, there are several
theoretical and experimental results showing that most automata are synchronizing (Berlinkov,
2013) and most of them have relatively short reset words (Ananichev et al, 2010; Skvortsov and
Tipikin, 2011).

In computing reset words, either exponential algorithms finding the shortest reset words
(Kudłacik et al, 2012; Rho and F., 1993; Sandberg, 2005; Skvortsov and Tipikin, 2011; Trahtman,
2006) or polynomial heuristics finding relatively the shortest reset words (Gerbush and Heeringa,
2011; Kudłacik et al, 2012; Podolak et al, 2012; Roman, 2009b,a; Trahtman, 2006) are widely
used. The standard approach is to construct the power automaton and to compute the shortest
path from the whole set state to a singleton (Sandberg, 2005; Trahtman, 2006; Kudłacik et al,
2012; Volkov, 2008). Most naturally, the breadth-first-search method is used which starts from
the set of all states of the given automaton and forms images applying letter transformations until
a singleton is reached. Based on these ideas computation packages have been created (TESTAS
(Trahtman, 2003) and recently developed COMPAS (Chmiel and Roman, 2011)). In (Roman,
2009a), Roman uses a genetic algorithm to find a reset word of randomly generated automata
and thus obtains upper bounds on the reset length.

A new interesting approach for finding the exact length using a SAT-solver has been applied
recently by Skvortsov and Tipikin (Skvortsov and Tipikin, 2011). The problem of determining
if an automaton has a reset word of length at most l is reduced to the SAT problem and the
binary search for the exact length is performed. Using this approach, the following experimental
study is done. For chosen numbers n of states from the interval [1, 100] hundreds of random
automata with 2 input letters are generated, checked if they are synchronizing, and if so, the
shortest reset word is computed. The results directly contradict the conjecture made by Roman
(Roman, 2009a) that the mean reset length for a random n-state synchronizing automaton is
linear and almost equal to 0.486n. Skvortsov and Tipikin argue that their experiment based on
a larger set of data shows that this length is actually sublinear and ≈ 1.95n0.55.

In this paper we present a new algorithm based on a bidirectional breadth-first-search. Im-
plementing this idea requires efficiently solving the problem of storing and comparing resulted
subsets of states. To this aim radix tries (also known as Patricia tries (Morrison, 1968)) are used.
Also, a number of heuristics are applied that speed up the algorithm considerably. We analyze
the algorithm from both theoretical and practical sides. As the first test of efficiency we have
performed experiments analogous to those done by Skvortsov and Tipikin. Due to the well per-
formance of the algorithm we were able to generate and check millions of binary automata up to
350 states, compared with 200− 2000 in (Skvortsov and Tipikin, 2011).
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Our results confirm the hypothesis that the expected reset length is sublinear, but show that
more precise is a smaller approximation ≈ 2.5

√
n− 5. In addition, the larger set of data enables

us to estimate the error and to show that for our approximation with high probability the error is
very small. We also verify and discuss other results and claims of (Skvortsov and Tipikin, 2011).

Our algorithm makes also possible to find a reset word of the shortest length (not only the
reset length). Curiously, it works in polynomial time for known slowly synchronizing automata
series (Ananichev et al, 2010). So far, most of the empirical research in the area concerns automata
with 2 input letters. Our algorithm made possible to perform also experiments on automata with
larger alphabets. These are of special interest because there is very little experimental material
concerning synchronization of such automata. The results presented in the last section show
certain trends with the same general pattern. It seems that, in spite of suggestions by some
researchers, the behavior of automata does not change as the size of the alphabet increases.

The main results of this paper were announced in (Kisielewicz et al, 2013).

2 Main part of the algorithm

The algorithm gets an automaton A = 〈Q,Σ, δ〉 with n states and k input letters. First, A is
checked if it is synchronizing using the well known (and efficient) algorithm (Eppstein, 1990).
If so, then we proceed to search for a synchronizing word of the shortest length. Here, one may
perform the breadth-first search (BFS) on the power automaton of A starting from the set Q of
all the states and computing successive images by the letters of the alphabet Σ (and recording
the sequences of the letters applied). One may also search in the inverse (backward) direction
starting from the singleton sets and computing successive preimages (this search will be referred
to as IBFS). Both the searches have branching factor k (the number of input letters) and need
to compute O(kl) sets (or O(nkl) in IBFS) to find a synchronizing word of the shortest length
l. The idea behind bidirectional search is to perform two searches simultaneously and check if
they meet. Then a synchronizing word may be found computing only O(nkl/2) sets. However, to
implement this idea there must be an efficient way to check each new subset to see if it already
appears in the search tree of the other half of the search.

2.1 Maintaining lists of subsets

For each search we maintain the current list of subsets that can be obtained from the start in
a given number of steps. Since the lists have a tendency to grow exponentially and to contain
subsets obtained on earlier steps, it is more efficient to maintain additional lists of visited subsets
(for each search) and to use them to remove from the current lists redundant subsets. We have
checked experimentally that it is a good strategy to decrease the branching factor.

To check if the two searches meet one needs to perform subset checking: after each step, BFS
or IBFS, we check if a set on the current IBFS list contains a set on the current BFS list. If so,
it means that there are words u,w ∈ Σ∗ such that the image Qu is a subset of the preimage
{q}w−1 for some q ∈ Q. Consequently, Quw = {q}, as required.

Since, in the bidirectional approach, subset checking must be performed anyway, it may be
also applied to reduce lists using the following simple observation. If S and T are subsets of Q
such that S ⊆ T , then |Tw| = 1 implies |Sw| = 1 for any w ∈ Σ∗. It follows that, for example,
a subset on the IBFS list contains a subset on the BFS list if and only if – with respect to inclusion
– a maximal element on the IBFS list contains a minimal element on the BFS list. Consequently,
the only subsets on the BFS lists we need to consider are those minimal with respect to inclusion
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and the only subsets on the IBFS lists we need to consider are those maximal with respect to
inclusion.

To store and check subsets on the lists we apply an efficient data structure known as radix trie
(Patricia trie) (Morrison, 1968). We show that the subset checking operation (checking whether
a given set S has a subset stored in the trie) and the dual superset checking (checking whether
a given set S has a superset stored in the trie) are efficient enough for these structures to make
a combination of the ideas presented above work well in practice.

This approach is fast but memory consuming. In order to also make the algorithm work
efficiently for larger automata, when the memory limit is reached, the bidirectional approach is
replaced by a sort of an inverse DFS search not involving the tries of visited subsets anymore. We
also apply several technical optimizations and heuristics which yields a considerable speed-up.
They are described in Section 4.

2.2 Radix tries

A radix trie is a binary tree of the maximal depth n which stores subsets of a given n-set Q in its
leaves. Having a fixed linear order of elements q1, . . . , qn ∈ Q, each subset S of Q encodes a path
from the root to a leaf in the natural way: after i steps the path goes to the right child whenever
qi ∈ S, and goes to the left, otherwise. A radix trie is compressed in the sense that instead
in a leaf it stores a subset in the first node that determines uniquely the subset in the stored
collection (no other subset shares the same path as a prefix of the encoding); c.f. (Morrison,
1968).

The insert operation for radix tries is natural and can be performed in at most n steps. The
subset checking operation is performed by a depth-first-search checking if the given set S ⊆ Q
contains a subset stored in the visited leaf. An essential advantage is that the search does not
need to branch into the right child of a node if the checked subset S does not contain the state
corresponding to the current level. The superset checking operation (for IBFS) is done in the
dual way. These issues are discussed in more detail in Section 6.

2.3 Basic procedures

A pseudocode of the algorithm is given in listings Algorithms 1–3. To make it clearer we restrict
the task to finding the reset length only, i.e. the minimal length of a reset word. Yet, the algorithm
can be easily modified to return also a reset word of such length (see 2.5).

We use, in principle, four radix tries Tc, Tv, Tic, Tiv to maintain the BFS current, BFS visited,
IBFS current, and IBFS visited lists, respectively. After initializing the tries we enter a loop
consisting of at most maxlen steps (line 11). In each step we perform a step of the BFS procedure
or IBFS procedure depending on comparison of estimated expected execution time of both steps,
which we discuss in 4.2.

With no regard if BFS or IBFS step was performed recently, in lines 17-21 of Algorithm 1, the
same goal test loop is performed. For each S in Tic, the procedure Tc.contains_subset_of(S)
is executed, which checks if Tc contains a subset of S. If so, we claim that l is the reset length
for A. To prove this we need to analyze the content of the BFS and IBFS steps.

In BFS step (Algorithm 2), for each set S′ in the current BFS trie and for each input letter
a we compute the image S = S′a and insert it to the list L. For each set S ∈ L we check if a
subset of S is already in the BFS visited trie. If so, we skip it. If not, we insert S into the BFS
visited trie and into the (newly formed in line 9) BFS current trie Tc. Processing elements of L
(line 10) in ascending cardinality order is a heuristic aimed in getting more subsets skipped in
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Algorithm 1 The main part
Input A = 〈Q,Σ, δ〉 – a synchronizing automaton with n = |Q| states and k = |Σ| input letters.
Input maxlen – maximum length of words to be checked.

⊲ Initialize four radix tries to store and handle subsets of Q:
1: Tc ← EmptyTrie ⊲ BFS current trie
2: Tv ← EmptyTrie ⊲ BFS visited trie
3: Tic ← EmptyTrie ⊲ IBFS current trie
4: Tiv ← EmptyTrie ⊲ IBFS visited trie
5: Tc.insert(Q)
6: Tv.insert(Q)
7: for all q ∈ Q do

8: Tic.insert({q})
9: Tiv.insert({q})

10: end for

11: for ℓ← 1 to maxlen do

12: if estimated time of the BFS step is smaller than that of IBFS then

13: BFS_Step(Tc,Tv) ⊲ Modify BFS tries; minimize Tc using Tv

14: else

15: IBFS_Step(Tic,Tiv) ⊲ Modify IBFS tries; minimize Tic using Tiv

16: end if

17: for all S ∈ Tic do ⊲ The goal test loop
18: if Tc.contains_subset_of(S) then

19: return ℓ ⊲ The reset length
20: end if

21: end for

22: end for

23: return “No synchronizing word of length ≤ maxlen”

Algorithm 2 BFS step procedure
1: procedure BFS_Step(Tc,Tv)
2: L← EmptyList ⊲ The list of all new images
3: for all S′ ∈ Tc do

4: for all a ∈ Σ do

5: S ← δ(S′, a) ⊲ Compute the image of S′ by the letter a

6: L.insert(S)
7: end for

8: end for

9: Tc ← EmptyTrie
10: for all S ∈ L in ascending cardinality order do

11: if not Tv.contains_subset_of(S) then

12: Tv.insert(S)
13: Tc.insert(S)
14: end if

15: end for

16: if Tv has grown large since the last reduction then

17: Tv.reduce
18: end if

19: end procedure

the checking subset procedure in line 11, and in consequence, to deal with smaller structures. It
also guarantees that Tc contains only only minimal sets in terms of inclusion.

Lemma 1 After each step of the main for loop of Algorithm 1 the trie Tc contains only minimal
elements of Tv (not necessarily all of them) and similarly the trie Tic contains only maximal
elements of Tiv.
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Proof Consider the structures Tv, Tc in Algorithm 2 as families of subsets. First of all note that
in each step we have Tc ⊆ Tv. Therefore, it is enough to show that there is no pair of different
subsets T and S, such that T ∈ Tv, S ∈ Tc, T ⊂ S.

Let S be a subset inserted into Tv and Tc and assume for a contrary that there is T ∈ Tv

such that T ⊂ S. It is impossible that S was inserted after T because of the subset checking test
in line 11. However if it is inserted before T then T must be inserted after S in the same BFS
step. But since we consider sets in ascending cardinality order it follows that |S| ≤ |T |, which is
a contradiction with T ⊂ S.

The IBFS step in Algorithm 3 is analogous and so is the proof for the trie Tic. We note only
that checking for a superset of a given set S in a given tree (line 11) is dual indeed: the search
does not need to branch into the left child of a node if the checked subset S contains the state
corresponding to the current level.

After executing lines 10-15 of Algorithm 2 the trie Tv may contain some redundant subsets
(which are not minimal with respect to inclusion). Therefore in lines 16-18 we have an additional
procedure to reduce Tv completely.

The procedure Tv.reduce consists of two steps. First, we form a list of elements of Tv using
a DFS-search from the left to the right (smaller subsets first). This guarantees that if S precedes
T on the list then S does not contain T . Hence the only pairs of comparable elements on the list
are those with S preceding T and S ⊂ T . In the second step we insert the elements from the list
into the empty Tv depending on the result of subset checking performed before each insertion.
This guarantees that if a subset S of T is inserted then T will be skipped on the later step. Hence
the resulting trie Tv contains no comparable subsets, as required.

Unfortunately, this procedure applied for such a large trie as Tv (which may be of exponential
size in terms of n) may be time-consuming. We found experimentally that if the trie has not
grown too large since the last reduction it is more effective to process a larger trie rather than
to perform the reduction. In our implementation we perform it after the first step and then
only when Tv contains at least k2 times more sets than it had after the last reduction (which
corresponds to two steps of the worst case computation with branching factor k = |Σ|).

Algorithm 3 IBFS step procedure
1: procedure IBFS_Step(Tic,Tiv)
2: L← EmptyList ⊲ The list of all new images
3: for all S′ ∈ Tic do

4: for all a ∈ Σ do

5: S ← δ−1(S′, a) ⊲ Compute the preimage of S by the letter a

6: L.insert(S)
7: end for

8: end for

9: Tic ← EmptyTrie
10: for all S ∈ L in descending cardinality order do

11: if not Tiv.contains_superset_of(S) then

12: Tiv.insert(S)
13: Tic.insert(S)
14: end if

15: end for

16: if Tiv has grown large since the last reduction then

17: Tiv.reduce
18: end if

19: end procedure



Computing the Shortest Reset Words of Synchronizing Automata 7

The IBFS step in Algorithm 3 is dual and completely analogous. In line 10 ascending car-
dinality order is replaced by descending one, in line 5 we compute preimages instead of images,
and in line 11 subset checking is replaced by superset checking.

2.4 Correctness

In order to prove the correctness of Algorithm 1, we introduce additional notation. Let T i
c denote

Tc after performing i steps of BFS, and let T j
ic denote Tic after performing j steps of IBFS.

Similarly, let T i
v denote Tv after performing i steps of BFS, and let T j

vc denote Tiv after performing
j steps of IBFS. We have the following

Lemma 2 For each set S ∈ T i
c there is a word u of length i, such that Qu = S. Similarly for

each set T ∈ T j
ic there is a word v of length j, such that {q}v−1 = T for some state q ∈ Q.

Proof The proof is by induction. For i = 0 the claim is true with the empty word. For i > 0, we
note that all new sets S inserted into T i

c are obtained by applying a letter a to a set S′ ∈ T i−1
c

(line 5 of Algorithm 2). By induction hypothesis, there is a word u′ of the length i− 1 such that
Qu = S′. Hence, u′a has length i and we have Qu′a = S′a = S, as required. The proof of the
second statement is dual.

We can prove now

Theorem 1 Given a synchronizing n-state automaton A = 〈Q,Σ, δ〉, Algorithm 1 returns the
reset length of A or reports that no reset word of length ≤ maxlen exists.

Proof Let l be the length of the shortest reset words for A. First we show that the algorithm in
order to report the length of a reset word in line 19 needs to perform at least l (BFS or IBFS)
steps.

Assume that the algorithm reaches line 19 after i steps of BFS and j steps of IBFS. So there
are sets S ∈ T i

c and T ∈ T j
ic such that S ⊆ T . By Lemma 2, there are words u, v of lengths i, j,

respectively, and a state q ∈ Q such that Qu = S and {q}v−1 = T . Thus, Quv = {q}, and uv is
a reset word of length i+ j. Consequently, l ≤ i+ j.

Now we show that, if l ≤ maxlen, then the algorithm reaches line 19 after at most l steps. By
induction, we prove the following more general statement implying our claim: for each i, j ≥ 0,
0 ≤ i + j ≤ l, after i steps of BFS and j steps of IBFS there are sets S ∈ T i

c and T ∈ T j
ic, and

there exists a reset word w = uxv of length l, where |u| = i, |v| = j, |x| = l − i − j, such that
Qu = S and {q}v−1 = T .

For i+ j = 0, because of the initialization in lines 5-10, we have that Q ∈ T 0
c and {q} ∈ T 0

ic,
and a reset word of length l is as required. Assume that the statement is true for all i′ + j′ <
i + j. Assume also, first, that the (i + j)-th performed step is BFS one. Then, by the induction
assumption there exists a reset word w′ = u′x′v of length l and sets S′ ∈ T i−1

c and T ∈ T j
ic such

that Qu′ = S′ and {q}v−1 = T for some state q ∈ Q, |u′| = i− 1, |v| = j.
Since i+ j ≤ l, |x′| > 0. Let a be the first letter of x′ and x′ = ax′′. We need to consider two

cases, depending on whether S′a = δ(S′, a) (created in line 5 of Algorithm 2) is added (in line 13)
into T i

c or not. If so, then the statement is true, because we have the reset word w = w′ = (ua)x′′v
and sets S = S′a ∈ T i

c and T ∈ T j
ic, with required properties..

Otherwise the reason for not adding S′a into T i
c must be a set S ∈ T i

v, such that S ⊆ S′a
(line 11). Let u be the word corresponding to S by Lemma 2. Then the word w = ux′′v (where
x′ = ax′′) is a reset word. If |u| < i (we do not know yet if u ∈ T i

c), then w is shorter than l,
because |u|+ |x′′|+ |v| < i + (l − (i − 1) − j − 1) + j = l, which is a contradiction. So, |u| = i,
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which means that S has been added into T i
v in the currently performed i-th BFS step. It follows

that S has been also added into T i
c . Now, w = ux′′v is the required word for i, j with S ∈ T i

c

and T ∈ T j
ic, Qu = S, and {q}v−1 = T .

For the second part of the proof we need to assume that the (i + j)-th performed step is
IBFS one. In this case the proof is, again, completely analogous. The difference is that by the
induction assumption, we have now a reset word w′ = ux′v′, and we take into consideration the
last letter of x′. We leave this part to the reader.

2.5 Finding a shortest reset word

In order to find also a reset word of the minimal length l, one needs to apply the following slight
modification to the algorithm described above. The main point is that together with the sets
stored in the current tries Tc and Tic we need to store also the words assigned to these sets
by Lemma 2. To this end, in line 5 of Algorithms 2–3 we assign to S the word obtained by
concatenating the word assigned earlier to S′ with the letter a (at the end or at the beginning,
respectively). When the goal is reached, the two words are simply merged to form the required
reset word. Of course, instead of complete words, with each set we can store only a letter and
a pointer to the previous part of the word. From these the word is reconstructed when we reach
the goal. We note that in this way the asymptotic time and space complexity of the algorithm
remain the same.

3 The full algorithm

In the full version of the algorithm we first check whether the input automaton is synchronizing
at all, and if so, we try to find any reset word using fast heuristic algorithms in order to obtain
a starting value for maxlen in Algorithm 1 bounding from above the reset length. In case when
no reset word is found quickly by the heuristic algorithms, maxlen is set to (n− 1)2 + 1, so that
the algorithm returns either the reset length or a counterexample to the Černý conjecture.

The bidirectional BFS search works if we have no limit on memory resources. Since the
number of sets stored in the tries grows exponentially with the number of steps performed, for
large automata, we can easily run out of memory. To deal with this, we change the search strategy
when we reach the memory limit. Rather than to continue BFS searches in the both directions
we switch to depth-first search, which has restricted memory requirements, and may use the
subsets and words computed so far. This final phase of the algorithm may be used also to reduce
the computation time of the algorithm (even if we are far from reaching the memory limit). This
will be discussed in subsection 4.7.

Our experiments show that it is more efficient to apply the inverse DFS (IDFS), that is, one
starting from the sets in Tic and computing the preimages to find a set containing a member of
Tc (rather than one starting from the sets in Tc and computing images to find a set contained in
a member of Tic). An important modification is that we perform search on partial lists of subsets
making use of all available memory rather than on single subsets. This gives an additional boost.

3.1 The IDFS phase

Algorithm 4 shows a more formal description of this final phase. It is a recursive procedure
working on the list Lic of current sets (which in the first step is obtained from the trie Tic) and
modifying the variables depth and minlen. The first represents the current depth of the search
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(including all the steps of BFS and IBFS performed during the bidirectional search phase). The
second represents the length of the reset word found so far. It is used to bound the depth of the
IDFS search. We do not need to perform depth ≥ minlen steps, since we have found already
a reset word of length minlen. In line 7, minlen is decreased after each case when a shorter reset
word is found, and at the end of the procedure contains the length of the shortest reset word.
The procedure uses the Tc trie for the subset checking (line 6). The memory for storing the other
tries is released, and the trie Tic is replaced by the list Lic of subsets (cf. the general description
in Algorithm 5, lines 14-15).

The procedure IDFS starts computation with depth equal to the number of steps performed
in the bidirectional BFS search increased by one. It gets a list Lic of sets and computes the next
list, containing all preimages which can be obtained from sets in the input list (lines 3-5). The
next list L′

ic is therefore k times larger than the input list and it is split up into several parts, so
that each of the partial lists does not exceed the maximum allowed size maxsize (line 18). Then
the search branches recursively for each of the smaller lists. The trie Tc is not changed during
the process, and is used for the goal test performed for each new generated set, while inserting it
into the next list (line 6). In case the goal test is positive it means we have found a new shorter
reset word. Then minlen is modified suitably and new (greater) maxsize is computed taking
into account the new value of minlen and available memory.

In lines 3 and 17 the list is sorted in descending cardinality order, which is a heuristic method
to reach the goal faster and so to reduce the depth of the search. Note that the sorting here can
be performed in linear time by counting sort.

Algorithm 4 The IDFS recursive procedure
Input Lic – current list of sets

depth – current (total) depth of the search
minlen – length of the found reset word; used to bound the search depth
maxsize – the number of sets allowed in partial list of Lic

1: procedure IDFS(Lic,depth,minlen, maxsize)
2: L′

ic
← EmptyList

3: for all S ∈ Lic in descending cardinality order do

4: for all a ∈ Σ do

5: S′ ← δ−1(S, a) ⊲ Compute the preimage of S by the letter a

6: if Tc.contains_subset_of(S′) then ⊲ The goal test:
7: minlen← depth ⊲ modify minlen suitably
8: Compute new maxsize ⊲ using minlen and available memory
9: return minlen

10: end if

11: L′

ic
.insert(S′)

12: end for

13: end for

14: if minlen − 1 = depth then ⊲ a new reset word found in lines 6-7
15: return minlen

16: end if

17: Sort L′

ic
descending by cardinality.

18: Split L′

ic
into a sequence of partial lists of maximal size maxsize.

19: for all partial lists L of split L′

ic
do

20: minlen ← IDFS(L,depth + 1,minlen,maxsize) ⊲ By each call minlen can be decreased
21: end for

22: end procedure

It should be clear that if the bidirectional search Algorithm 1 performed t steps of BFS and
IBFS and did not found a reset word, then Algorithm 4 started with depth = t+1 and suitable
values of the remaining variables completes the job correctly. As mentioned at the beginning of



10 Andrzej Kisielewicz et al.

the section, minlen is set to the length of a reset word found by heuristics algorithms or to the
Černý bound (n − 1)2 + 1, and maxsize is computed on the basis of available memory. Then,
if the automaton A happens to have a reset word of the length t + 1, procedure IDFS(Lic, t +
1, minlen, maxsize) passes the goal test in line 6, and terminates with the value minlen = t+ 1
equal to the length l. Otherwise, recursive calls in line 20 perform a complete (inverse) depth first
search restricted by minlen. Decreasing minlen whenever a shorter reset word is found decreases
the number of visited subsets.

The description of the full algorithm is given in Algorithm 5 (it includes also some heuristics
that will be described later). If minlen = t + 1, that is the equality ℓ = minlen − 1 holds in
line 13, then IDFS is not called at all, because we have found already a reset word of length
minlen (or we know that no reset word of length (n− 1)2 exists). Otherwise, IDFS performs its
recursive calls.

Algorithm 5 The algorithm
Input A = 〈Q,Σ, δ〉 – a n-state automaton on k letters

⊲ Preprocessing
1: if A is not synchronizing then ⊲ Use Eppstein algorithm
2: return “Not synchronizing automaton”
3: end if

4: minlen← (n− 1)2 + 1 ⊲ Restrict search to the Černý’s bound
5: minlen← min(minlen,EppsteinAlgorithm(A,minlen))
6: minlen← min(minlen,FastSynchro(A,minlen))
7: minlen← min(minlen,CutoffIBFS(A, minlen))

⊲ Bidirectional Search
8: Reorder the states of A using the Markov chain model
9: ℓ← BidirectionalSearch(A,minlen − 1) ⊲ Algorithm 1

10: if a reset word was found then

11: return ℓ ⊲ The reset length
12: end if

⊲ IDFS
13: if ℓ < minlen − 1 then ⊲ search for possible shorter reset words
14: Free tries Tv and Tiv

15: Transform Tic into the list Lic and free Tic

16: Reorder the states of A using Tc

17: Compute maxsize – currently allowed size for IDFS partial lists
18: minlen← IDFS(Lic,ℓ+ 1,minlen, maxsize) ⊲ Algorithm 4
19: end if

20: if minlen ≤ (n− 1)2 then

21: return minlen ⊲ The reset length
22: else

23: return “No synchronizing word of length ≤ (n− 1)2” ⊲ Reaching this line means that the Černý
conjecture is false

24: end if

3.2 Using other heuristic algorithms

In our implementation we use Eppstein algorithm (Eppstein, 1990), FastSynchro algorithm
(Kudłacik et al, 2012) and our own procedure Cut-Off IBFS (Kowalski and Szykuła, 2013).
The latter is the standard IBFS search with cutting the branches of the search that do not seem
promising (that do not increase the sizes of subsets fast enough). The order here is from the
fastest algorithm to the slowest one, and from the worst to the best one in terms of finding
a bound as small as possible. In this order, slower algorithms use a previously found bound by
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a faster algorithm to terminate computation when the bound is achieved. Our procedure Cut-Off
IBFS often finds very good bounds, but works relatively slow when the input bound is large.

As given in Algorithm 5, Eppstein algorithm is used also at the beginning to check synchro-
nizability. After that we assume the initial bound (n−1)2+1, to be able to discover a counterex-
ample for the Černý conjecture (if it is the case; see line 23). The minimal bound minlen found
by heuristic algorithms decreased by one is used as maxlen for bidirectional search (line 9). If
this procedure does not find a shorter reset word then it means that it has been found already by
heuristic algorithms (and has length minlen) or that no reset word of length less than (n− 1)2

exists (the latter is in case when heuristic algorithms did not find such a word either; lines 20-23).
This makes possible to spare the last step in bidirectional search and gives a boost if minlen is in
fact the minimum length. More importantly, using heuristic algorithms to obtain a good initial
bound is a part of the optimization described in 4.7.

3.3 Working with limited memory

Combining the bidirectional search with the IDFS phase guarantees that the algorithm will not
exceed a certain memory limit, which is important in practice. The more memory is provided
for the algorithm the more efficient computation it performs. When measuring memory usage we
need to consider stored sets in the tries and lists, and nodes in the tries. The other structures used
by the algorithm can be bounded by O(kn2), including the automaton itself and the memory
used by heuristic algorithms in the preprocessing phase.

When during the bidirectional phase the tries and lists reach the memory limit then we switch
to IDFS phase. We can then free the visited tries. In the IDFS phase we need to store the sets
and nodes of Tc and sets from the lists Lic at each level. There are at least 2k|Tic|+ d sets in the
lists, where d is the difference between the upper bound and the number of currently performed
steps. This comes from the fact that we decrease the size of a partial list in a IDFS step at most
two times, and we also need at least one set for a recursive call of the IDFS step procedure. This
can be bounded by O(n2), and so the minimum required memory for all recursive calls of the
IDFS step procedure is O(n3). Remaining available memory is used to make Lic lists larger.

The whole algorithm runs in O(kn2) + min{O(n3), C} space, where C is a parameter deter-
mining the memory limit. The larger the limit is the longer the bidirectional phase works, and
the larger Lic lists are in the IDFS phase. So the larger C the faster execution of the algorithm
is.

4 Heuristics and optimizations

In this section we describe the most important heuristics and optimizations added to the generic
version of the algorithm. For computationally hard problems, heuristic improvements are widely
used and can yield in an impressive speed-up in an average case (see for example Batsyn et al
(2013)). In our algorithm, altogether they can reduce computation time by as much as 96% and
99% for automata with n = 150 states and n = 200 states, respectively (that is by a factor of
from 25 to 100 and more), relative to the implementation without these optimizations. In order
to estimate roughly speed-up of a given optimization we compare the performance of the full
version of the algorithm with and without this optimization. This is done mainly on the sample
of a few hundreds of random automata with n = 150 and n = 200 states. We note that this must
be considered only a rough estimation, since some of these heuristics may be argued to have
better impact for larger automata. As most of computation time is taken by subset-checking, the
majority of heuristics are aimed to optimize these operations.
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4.1 Technical optimizations

We start from mentioning two obvious technical optimizations. First of all, since every synchro-
nization leads to a state in the sink component of the automaton (that is, in the minimal strongly
connected component of the underlying digraph), we may replace the set Q in the initialization of
IBFS in line 7 of Algorithm 1 by the set Q′ of the states in the sink component, that have at least
2 incoming edges on some letter. At second, we should mention that we store sets as bit-vectors,
which minimizes the used memory and provides a constant time checking and inserting a state
in a set. (See (Kudłacik et al, 2012) for a discussion of other possible encodings).

Another technical optimization is based on precomputing images. This idea was applied in
(Kudłacik et al, 2012, 5.1.12). Before we run the algorithm, we split up the states of the automaton
into groups of size at most t. Then for each group, each possible subset of states from the group
and each letter, we compute the image and the preimage of the subset. Having these images,
we can compute the image of a set by using only ⌈n/t⌉ union operations instead of computing
n transitions. However computing transitions can be done in constant time, while union depends
highly on the maximum size of bit-vector which can be processed in an elementary operation; for
example it can take O(n/64) in 64-bit architecture. Nevertheless for our automata sizes setting
t = 8 provides a speed-up by an average of 21% and 16% for automata with n = 150 and n = 200
states, respectively.

4.2 Estimation of expected step time

To decide which step will be performed in line 12 of the Algorithm 1 we follow the greedy strategy
choosing this step whose execution time, together with the goal test, seems to be smaller at the
moment. This strategy would be optimal if execution times of particular steps of one kind would
be independent of those of the other kind. This is not the case because of the goal test is
taking into account. Nevertheless, we have checked it experimentally, that this strategy leads to
a significant improvement.

We use a rough estimation of expected execution time by calculating upper bounds for the
expected number of visited nodes in subset checking operations, under some simplifying assump-
tions. Since all other operations in the steps in question are linear in terms of n and the sizes
of the current lists, subset checking are the most time consuming operations. Therefore for es-
timation of the BFS step we take simply the sum ExpBfs = Ec + Ev of the expected number
of visits nodes in the tries Tv (inside the BFS step) and Tc (inside the goal test), respectively.
Similarly, for the IBFS step we take the sum ExpIbfs = Eiv + Eic of the expected number of
visited nodes in the Tiv and Tic, respectively.

To estimate Ev, Ec, Eiv , and Eic we apply the formula established in Theorem 4 in Subsec-
tion 6.1. We assume that on each step the subsets in the tries are random with the uniform
Bernoulli distribution. Assuming that (on a given step) a set S ⊆ Q contains each element of
Q with independent probability p, and for every set S′ in the trie in question the probability of
containing any element is q, for m sets in the trie, we have that the expected number of visited
nodes during the subset checking operation does not exceed

ExpNvn(m, p, q) =

(

1 + p

p
+

1

q − pq

)

mlogw (1+p),

where w = 1+p
1+pq−q .

Now, to compute the probabilities p and q we count the average size of the subsets in each
of the tries and divide by n = |Q| (the maximal number of the elements). For the BFS step
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we first perform the subset checking in the trie Tv, which grows during the step (lines 11-14 of
Algorithm 2). The cardinality of Tv may increase as much as to |Tv| + k|Tc|. The sum of the
cardinalities of the sets in Tv may increase as much as to

∑

x∈Tv
|x| + k

∑

x∈Tc
|x|. We found

experimentally, that the most efficient is to take these upper bounds to represent the average
probability pv, for any element, to belong to a set in Tv during subset checking in lines 11-14:

pv =
1

n(|Tv|+ k|Tc|)

(

∑

x∈Tv

|x|+ k
∑

x∈Tc

|x|
)

.

For the goal test the probability pc for an element to belong to a set in Tc, after modifying Tc in
the BFS step, may be defined as

pc =
1

nk|Tv|
∑

x∈Tv

k|x| = 1

n|Tv|
∑

x∈Tv

|x|.

Note that this is the same as before modifying Tc. So the same probability may be used in the
goal test after the IBFS step. Analogously we define probabilities pic and piv for any element to
belong to a set in Tic and Tiv, respectively.

pic =
1

n|Tic|
∑

x∈Tic

|x|

piv =
1

n(|Tiv|+ k|Tic|)

(

∑

x∈Tiv

|x|+ k
∑

x∈Tic

|x|
)

.

Using these we define

ExpBfs(Tc, Tv, Tic) = k|Tc|ExpNvn(|Tv|+ k|Tv|, pc, pv) + |Tic|ExpNvn(k|Tc|, pic, pc)
ExpIbfs(Tic, Tiv, Tc) = k|Tic|ExpNvn(|Tiv|+ k|Tiv|, 1− pic, 1− piv) + k|Tic|ExpNvn(|Tc|, pic, pc)

Depending on which of these values is smaller we perform the BFS or IBFS step, respectively.
In our empirical observations this heuristic reduces computation time by an average of 9% and

26% for automata with n = 150 and n = 200 states, respectively, relative to the implementation
performing the BFS and IBFS steps alternatingly (or when the choice of the step is based merely
on the sizes of the current tries.) It usually leads to perform slightly more BFS steps, since
average sizes of subsets decrease faster in BFS than increase in IBFS. By a result of Higgins after
applying two BFS steps the average size of subsets is as small as 0.55n (see (Higgins, 1988)).
Our empirical observations show that the two searches meet when the sizes of subsets are about
0.09 for automata with n = 200. This fact is also the reason why in the goal test we decided to
use subset checking in Tc rather than superset checking in Tic (subset checking does not require
branching in subtries corresponding to elements not belonging to the queried set).

4.3 Reduction of the automaton

If the input automaton is not strongly connected, after some steps of BFS it can be reduced to
a smaller automaton without the states not involved in computation anymore. More precisely,
we can remove the states which are not reachable from any state in any subset in the current
BFS list. Smaller automata lead obviously to faster execution because of having smaller tries and
faster computation of images and preimages (when stored as bit vectors or other constant-space
representations).
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So, at the beginning, before the main loop of Algorithm 1 (line 11), we perform a few steps
of BFS and when the size of Tc is larger than s|Q|, for an experimentally established constant s
(we use s = 16), we check if there are unreachable states in Q (that is, the states which cannot
be obtained by applying any word to any state in any set in Tc). This is done by the standard
DFS search on Q. If this is the case, we create a reduced automaton A′ removing the unreachable
states, and rebuild all the tries to make them compatible with the reduced automaton. Then,
the algorithm may continue using the parameters computed so far.

Our experiments show that after the first reduction the automaton is usually strongly con-
nected (and no further reduction of this kind can be done). Yet, this optimization is efficient
since we have proved that the fraction of strongly connected automata to all automata with n
states tends to 0 as n goes to infinity, and that the size of the strongly connected component is
on average close to 1 − 1/ek. From our experiments it follows that for synchronizing automata
with k = 2 this size is ≈ 0.7987n. Thus, for example, automata with n = 200 states are reduced
on average by as much as 40 states, which results in a speed-up of 27%.

4.4 Reordering of the states

Efficiency of operations on radix tries depends on the order in which the input automaton’s
states are processed. Since all the tries change during the search it is difficult to find the optimal
ordering of the states. Generally, it seems that the subset checking should be performed faster
if the states occurring more frequently in queried subsets are later in the ordering. A heuristic
argument is that radix tries have usually logarithmic height for a wide class of distributions (cf.
(Devroye, 1982)), and therefore the states at the end in the ordering are rarely or never checked.
As a result, the “effective size” of the queried sets is smaller (provided they are large enough).
Also, if a state occurs rarely and with a high probability it is not a member of a given queried
set, the search for a subset goes only into one branch on the level of this state (but on the other
hand, in such a case, the branch is relatively small). Which of these arguments is prevailing may
be decided experimentally.

We have tried to find frequencies of occurrences of states, and a preferred initial order based
on them, by a heuristic approach using stationary distribution of a Markov chain created for the
automaton (see (Stewart, 1994) for general use of Markov chains in computations). We first find
the sink component of the automaton, which can be done quickly using the well-known Tarjan’s
algorithm (Tarjan, 1972). We define the probability of transition from a state a to a state b
in the sink component as follows. For each letter which takes a to b, we define the probability
to be 1/k plus ǫ, for some small ǫ > 0. Then they are normalized to be summed up to 1. A
Markov chain has a stationary distribution if it is irreducible and ergodic, that is, there exists
a finite number N such that any state is reachable from any other state with positive probability
after exactly N steps. Because we used the sink component, the Markov chain is irreducible and
because we set non-zero probability (due to adding ǫ) for each possible transition the Markov
chain is ergodic. The stationary distribution of the Markov chain is computed in a direct way
(see (Stewart, 2000)).

Now, the set of states is reordered in such a way that the states are sorted ascending by
probabilities in the computed stationary distribution. The states which do not belong to the
sink component are placed at the end, sorted ascending by in-degree (they usually play little
role in differentiating the subsets). Radix tries with subset checking use this very order of states
and radix tries with superset checking use the inverse order. This optimization is performed
once before the bidirectional search phase (Algorithm 5, line 8). Choosing this very ordering as
a preferred one has been confirmed by experiments with various trials.
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The situation changes during the IDFS phase, when the trie Tc is fixed and does not change
anymore. The frequencies of occurrences of the subsets in Tc may by computed exactly. It seems
to give better performance of subset checking when the states are ordered descending: from
the most frequently occurring in the trie to those occurring the least. This has been confirmed
strongly by experiments. In our tests, both reordering reduces computation time by an average
of 16% and 26% for automata with n = 150 and n = 200 states, respectively. Because of the
relatively high cost of computing the first reordering, it seems that this part may prove to be
more profitable for automata with larger number of states.

4.5 Additional lexicographical ordering

In Algorithm 2 line 10 we sort the list in ascending cardinality order. This helps us reducing
the size of Tv. In addition to that for sets with the same cardinalities we sort them by inverse
lexicographical order, that is S is before T if and only if the first state (in the applied automaton’s
order) which differs them is in S and not in T .

The reason for this is the following. Consider the operation in line 10. Let S, T ∈ L be sets
with the same cardinalities, and let q ∈ Q be the first state differing S and T with q ∈ S and
q /∈ T . Assume that S precedes T in L. Now, if S is inserted in Tv, then during the subset
checking for T , when it reaches the level of q in the trie, it does not go into the branch of S (and
additional nodes created by inserting S), since no subset of T contains q. Also, if S is not inserted
in Tv no additional nodes are visited during the subset checking for T . In the opposite case, when
T precedes S, and T is inserted in Tv, subset checking for S must go additionally into the branch
created for T .

The situation for superset checking is dual. This optimization reduces computation time only
for very large automata, because of more expensive cost of sorting. For automata with n = 250
states it gives a speed-up by an average of only 3%, and for automata with n = 300 of 4%.
However, it seems that it may have even bigger impact in case of larger automata.

4.6 Sub-tries elimination in subset-checkings

This heuristic is used to reduce the number of visited nodes during subset-checking, by skipping
the nodes whose sub-tries certainly do not have a subset of the queried set. In each node of a trie
we can store additionally the minimum size of all the sets stored in the sub-trie. When checking
for a subset, if this size is larger than the subset’s size, we can skip it and do not go down. In
addition to storing a single size, we may store a marker for each state indicating if all the stored
sets contains this state. If so, and if such a state does not occur in the checked subset, we can
skip the node with such a marker.

Others combinations are possible. For each family of subsets of the states, we can store for
each subset the minimum number of elements in the stored sets. However we use this only for
the whole set Q and the singletons, since these cases can be efficiently implemented. They both
provided a significant reduction of tries traversal, resulting in speed-up by an average of 49% of
computation time for automata with n = 150 states, and 51% for automata with n = 200 states.

A disadvantage of this heuristic is that it uses a lot of additional memory, which may result
in earlier switching to the IDFS phase. It requires O(n) space for a node and O(n) time for
visiting a node during subset-checking, instead of O(1) time and space in the version without
the heuristic.
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4.7 IDFS shortcut

As mentioned at the beginning of Section 3, the final IDFS search may be used to reduce the
computation time by several orders of magnitude. To this end one needs to observe that knowing
that bidirectional search is close to end it is profitable to switch to IDFS phase: at the end the
IDFS works much faster, since we do not need to check visited sets and do not need to reconstruct
Tc anymore. We call this optimization the shortcut. Between steps we use an estimate if it is
faster to continue the bidirectional phase or to switch to IDFS phase. Note that the IDFS has
a lower constant factor, but the branching factor is equal to k. So, it slows the search if started
too early.

Let d be the number of steps remaining to finish the bidirectional phase search. We use
formulas defined in Subsection 4.2 to decide when it is the most suitable moment to switch to
IDFS phase. We compute an estimated expected number of visited nodes in Tc if the IDFS phase
would be started at the given moment:

E1 = kd|Tic|ExpNvn(|Tc|, pic, pc)

Then we compute an estimated expected number of visited nodes if one more BFS step would
be performed and after that the IDFS phase would be started:

E2 = ExpBfs(Tc, Tv, Tic) + kd−1Tic|ExpNvn(k|Tc|, pic, pc)

If E1 is smaller then E2 we start IDFS phase. We do it only if the lists Tc and Tic are large
enough and if the current branching factor is larger than 1. If the list are relatively small (which
means that the branching factor is being reduced effectively), the IDFS would slow the search,
so we continue the bidirectional search. This enables, in particular, that slowly synchronizing
automata in Subsection 5.2 and other automata with strongly reduced branching factor are
processed quickly by the algorithm.

Our experiments show that finding a bound by other heuristic algorithms combined with the
IDFS shortcut is a really good optimization as it reduces computation time by as much as 83%
and 88% for automata with n = 150 and n = 200 states, respectively.

5 Complexity

The efficiency gain of the algorithm relies mainly on two properties of the majority of automata.
First, the average size of subsets decreases fast during the first BFS steps, but increases slow
during IBFS steps (cf. Subsection 4.2). Due to this fact the maintained subsets are usually
small. Second, the branching factors of both BFS and IBFS are less than k, because of skipping
redundant visited sets. Both of the properties are hard to study in a theoretical way, we however
have observed them in series of experiments.

In this section we analyze the main part of the algorithm with all optional heuristics, except
the sub-tries elimination described in Subsection 4.6. The latter, if applied, worsens theoretical
bounds because of more expensive subset-checkings in the worst case.

5.1 Time and space complexity

To provide a theoretical argument we analyze here the expected running time of the algorithm
under some artificial assumptions. We give an upper bound for the bidirectional search only,
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which is a rough estimate of the expected time, but shows a significant impact of the automata
properties on performance.

The following assumptions are made:

1. The overall branching factor is r in each step of both BFS and IBFS, 1 < r < k. This
corresponds to an efficient branching factor, which in view of our experiments is considerably
less than k.

2. The sets in the tries Tc, Tv and Tic, Tiv have random Bernoulli distribution: in each step, they
contain any given state with probability 0 < pc < 1 (for BFS steps) and 0 < pic < 1 (for
IBFS steps). We assume also that pic ≤ pc.

3. The steps of BFS and IBFS are performed alternatingly, starting from BFS.
4. No reductions of the visited tries are made and no IDFS phase is performed.

We use RAM computation model in the analysis, with the uniform cost criteria (that is,
each elementary operation costs one time unit). We consider r, pc, pic as constants and compute
a bound as a function of n and k. Let l be the reset length of the automaton. For simplification,
assume that l is even.

The initialization phase time may be bounded polynomially by O(kn4). This includes com-
puting the inverse automaton O(nk), running the heuristic synchronizing algorithms O(kn4),
computing the stationary distribution O(n3), changing the order of the states of the automaton
O(nk + n logn), and initializing the tries O(n2).

Under the assumption on the branching factor, the number of sets in Tc in i-th BFS step,
after performing (i − 1)-BFS steps and (i − 1)-IBFS steps, can be bounded by ri, which is the
number of sets after the step. The number of sets in Tv can be bounded by summing added sets
during all the BFS steps:

∑i
j=0 r

j = ri+1−1
r−1 ∈ O(ri). Similar bounds hold for Tic and Tiv, but

there are n sets at the beginning, so it yields O(nri).
Recall that under assumptions above we have an estimation for the visited number of nodes

in the trie

ExpNvn(m, p, q) =

(

1 + p

p
+

1

q − pq

)

mlogw (1+p),

where w = 1+p
1+pq−q (cf. Subsection 6.1). Since we we use this formula for various pairs p and q,

we shall use an abbreviation w(p, q) = 1+p
1+pq−q .

Note that each of computing an image or preimage of a set, checking the size of a set, checking
if a set is a subset or superset of another set, can be done in O(n) time. Subset checking for one
set can be done in expected time O(nExpNvn(m, p, q)), for suitable m, p, q. This is so, because
a single visited node costs O(n) if we use the heuristic from Subsection 4.6, and test if the set is
a subset of a stored set in leafs, which also costs O(n).

The expected time of the BFS step includes sorting of sets in L (this is done by counting sort,
in this case), computing the image of each set by each letter, and checking for visited subsets.
So we can bound this by

O
(

(nri) + (knri) + (knriExpNvn(O(ri), pc, pc))
)

.

The last component in the sum is dominating, which yields

O
(

knri(ri)logw(pc,pc)
(1+pc)

)

.

Similarly for the bound for the expected time of IBFS step we obtain:

O
(

knri(nri)logw(pic,pic)
(1+pic)

)

.
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Considering the goal test, it is enough to count only the goal test time after the IBFS step
(multiplied by 2). This can be bound by

O(nriExpNvn(O(ri), pic, pc)) = O(n2ri(ri)logw(pic,pc)
(1+pic)).

Computing estimated expected step times after i-th BFS step and i-th IBFS are done in O(nri)
(having access to list of sets in a trie in linear time), so it may be neglected.

Summing these all yields under domination of the BFS and IBFS step time and the goal test:

O
(

knri
(

(ri)logw(pc,pc)
(1+pc) + (nri)logw(pic,pic)

(1+pic)
)

+ n2ri(ri)logw(pic,pc)
(1+pic)

)

∈ O
(

kn2ri(ri)d
)

= O
(

kn2(ri)1+d
)

where

d = max((logw(pc,pc) (1 + pc)), (logw(pic,pic) (1 + pic)), (logw(pic,pc) (1 + pic))).

The parameter d depends on the distribution of sets in the tries. Note that 0 < d < 1, so we
could bound nd simply by n.

We can now sum over the steps and obtain as the final result the time complexity:

l/2
∑

i=1

O
(

kn2(ri)1+d
)

∈ O(kn2

(

r(1+d)(l/2+1) − 1

r1+d − 1

)

)

∈ O(kn2rl(1+d)/2))

The expected space complexity can be bounded by counting stored sets and nodes in the
tries after the last step. There are O(rl/2) sets in each of the tries. Each set requires O(n) space,
also it induces at most O(n) nodes in a trie. The initialization phase can be done in O(nk + n2)
space. So we can state up the space bound for O(n(k + n) + nrl/2). We may summarize these
considerations in

Theorem 2 Under the assumptions (1-4) above, and with l denoting the reset length of the
automaton, the expected time complexity of the algorithm is O(kn2rl(1+d)/2)), and the space
complexity is O(kn2 + nrl/2).

We can observe that the expected time is exponential with regard to the length l, but the
exponent is less than l, since (1 + d)/2 < 1. It is an improvement over the standard BFS
algorithm, which has time bound O(knRl) (assuming we can check visited sets in constant
time). Moreover the standard algorithm has usually larger effective branching factor R ≥ r,
since strict supersets of visited sets are not skipped. The expected space complexity yields also
an improvement comparing with O(nRl) space bound for the standard BFS.

For example, for automata with n = 200 states on 2 letters we experimentally obtained that
the effective branching factor is 1.88 for BFS and 1.36 for IBFS, while the standard BFS has 1.93
in this case. The average sizes of sets are about 0.1 and the corresponding d parameter is about
0.5 for most of steps except a few first, so in this case this would yield to the exponent 0.75l.
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5.2 Performance on slowly synchronizing automata

Let us recall that by the Černý automaton Cn we mean an n-state automaton on the set Q =
{0, 1, . . . , n − 1} of states with two input letters a and b such that one letter, say a, satisfies
0a = 1a = 1, and xa = x, otherwise, while the second letter, b acts as the cyclic permutation
xb = x + 1 (modulo n). It is well known that this automaton has the reset length equal to
(n − 1)2. In (Ananichev et al, 2012), the authors introduce the series of, what they call, slowly
synchronizing automata D ′

n,Wn,Fn,En,D ′′
n,Bn,Gn,Hn with the property that the reset length

of these automata is quadratic in terms of the number of states n and close to the Černý bound
(n− 1)2.

Now, while, generally, our algorithm is exponential in the reset length l, surprisingly, it works
fast in polynomial time for all the slowly synchronizing automata defined in (Ananichev et al,
2012). Since the proof is different but very similar in each case, we demonstrate it only for the
Černý automata Cn. In other cases the proof is left to the reader on the basis of the definitions
given in (Ananichev et al, 2012).

Theorem 3 For the class of the Černý automata Cn, (and all the classes of slowly synchronizing
automata defined in (Ananichev et al, 2012)) the algorithm works in O(n4) time and O(n2 logn)
space.

Proof For each automaton, time used by the preprocessing phase, consisting of the heuristics,
reordering the automaton and initializing can be bounded by O(n4), and space can be bounded
by O(n2). Further, we consider the Černý automata Cn for n > 5.

First, observe that for Cn after the first step of IBFS there is only one set {0, 1} in Tic,
because only one state 1 has the preimage of size 2 by a−1. During the next n− 1 IBFS steps Tic

consists of only one set: {n− 1, 0}, {n− 2, n− 1}, . . . , {1, 2}, successively, obtained by applying
b−1. Then, after the next step the only set in Tic is {0, 1, 2}. Other preimages are contained in
the set that have been already created and are in the visited trie Tiv. Generally, Tic still consists
of a single set whose size increases by 1 after each consecutive n IBFS steps. Since the cost of
single superset checking is O(n2) (because the size of Tiv is O(n) as we argue below), the total
cost of the IBFS steps (without reductions of Tiv) is O(n4).

For reductions of Tiv we use the fact that after each step there is only one set added to Tiv.
Generally, the added sets are of the form {0, 1, . . . , i}, {n− 1, 0, . . . , i− 1}, . . . , {j, j+1, . . . , j+ i}
(modulo n). So, after the reduction there are at most n sets in Tiv. Since the reduction is
performed if Tiv has grown k2 = 4 times since the last reduction, we have at most O(n) sets to
reduce and a single reduction costs O(n3). Also there are not more than O(log n) reductions, so
the total cost of reductions is O(n3 log n). This yields that the total cost of the IBFS steps is
O(n4).

Consider now the BFS steps. At the beginning we perform some BFS steps due to the re-
duction of the automaton until |Tc| > sn, for some constant s (see Section 4.3). Let us analyze
this phase of the algorithm. We start from Q = {0, 1, . . . , n− 1} and after the first step we end
with the set Qa = {1, . . . , n − 1} in Tc, since Qb = Q and it is skipped. After the second step
only applying b yields a new set Qab = {0, 2, . . . , n − 1}. In the next step the set Qaba = Qa,
so the only new set, and the only member of Tc is Qabb = {0, 1, 3, . . . , n − 1}. Since the latter
set has both 0 and 1, applying both the letters a and b yields new sets. If n is large enough
this pattern repeats: after applying a we need to apply b twice to obtain a set containing both
0 and 1, so that applying both the letters a and b yields new sets. This argument may be used
to prove that, in general, |T i

c | = |T i−1
c |+ |T i−3

c | for i < n, where |T i
c | is the number of sets after

the i-th BFS step. In particular, Tc is growing exponentially. So, for a sufficiently large n there
is O(log n) steps of BFS at the beginning, until |Tc| > sn. Under this condition, the size of Tc is
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O(n), and the size of Tv is bounded by O(n log n). Thus, a single step of BFS in this phase costs
O(n3 log2 n) and all the steps in this phase cost O(n3 log3 n). Note that no reductions of Tv are
performed in this phase. When we get |Tc| > sn, then after that only IBFS are performed, since
it is |Tic| ≤ sn < |Tc| for all the remaining steps.

Finally we must consider the goal tests. A single goal test costs O(n2), since we have O(n)
sets in Tc and O(1) sets in Tic. Summing up all time costs we obtain O(n4), as required.

Total used space can be bounded by the space used in the preprocessing phase, and by the
tries Tc, Tv, Tic and Tiv which is O(n2), O(n2 logn), O(n), O(n2) respectively. Hence the total
space is O(n2 logn).

As mentioned, the proof for the slowly synchronizing automata defined in (Ananichev et al,
2012) is very similar. The most important difference is the growth factor in BFS steps, but it is
exponential in all the cases. In addition, for D ′′

n ,Bn,Fn,En,Hn there can appear two sets in Tic

(rather than one), but this is O(1), anyway.

6 Radix tries and subset checking

In this section we analyze the operation of subset checking for radix tries. Recall ((Morrison,
1968)), that a radix trie is a binary rooted tree which stores sets in leafs. Each leaf stores one
set. We consider radix tries as dynamic data structures that store subsets of a countable universe
U = {x1, x2, . . .}. A set X ⊆ U may be may be identified with the sequence (b1, b2, . . .), where
bi = 1 if xi ∈ X , and bi = 0, otherwise. This sequence determines the unique path in the trie
starting from the root to the leaf. At level h, if xh+1 ∈ X , then the path goes into the right child,
and otherwise it goes into the left child. The path is truncated at the first node which does not
belong to any other path induced by another set, and the node becomes a leaf in the trie.

Let m be the number of sets stored in a trie, and let n be the cardinality of the universe. The
insert procedure for a set S can be performed in time O(h), where h is the maximum height of
the trie. This is done by following the path encoded by S from the root to a leaf or to a first node
not in the trie. In the latter case, we add the corresponding new node to the trie to store S. In the
former, the leaf stores a set S′, and we extend the both paths until they diverges. Thus, h ≤ n.
If n = ∞, then the path can be arbitrary long. However if we consider random sets, it is known
that the average height of a trie is O(log(m)) for any square integrable probability of containing
each element in a set (see (Devroye, 1982)); for other consideration concerning parameters of
tries for random keys see (Szpankowski, 1991)).

We consider subset checking procedure which decides for a given set S = {s1, s2, . . .} if there
is a subset of S stored in a given trie. The subset checking is performed by a standard DFS search
with cut-off determined by the following rule. Starting from the root, at the level h if sh+1 ∈ S
the searching goes into the branches of the two children and otherwise it does only into the left
child. The right child can be skipped since any subset of S cannot have the h+ 1-th element if
sh+1 6∈ S. When a leaf is reached, a simple subset test is performed for S and the stored set.

If a radix trie is used only for insertions and subset checking queries, one may optimize the
insert procedure to reduce the number of stored sets in the trie. If the insert procedure for a set
S reaches a leaf, and the stored set S′ in the leaf contains S, one may replace S′ by S, instead of
extending the path in order to store both the sets. In that way the number of stored sets in the
trie after m insertions can be less than m, but every subset checking will give the same result as
if we store both the sets in the trie. For certain distributions it may reduce the size of the trie
considerably.



Computing the Shortest Reset Words of Synchronizing Automata 21

6.1 Bounds for the expected number of visited nodes

We provide here an analysis of the expected time for the subset checking procedure. For the dual
version of the procedure, the superset checking, all the results are analogous, one needs only to
apply the corresponding dual assumptions (for example, the probability of containing an element
should be replaced by the probability of not containing it).

We say that a set S ⊂ X is a random subset of X with Bernoulli distribution in [q, r] if each
element x of X is a member of S with probability px ∈ [q, r], independently of other elements.
Given m, we say that a family of subsets of X is a random family of m subsets with Bernoulli
distribution in [q, r], if each member of F is, independently, a random subset of X with Bernoulli
distribution in [q, r].

Theorem 4 Let p, q, r ∈ (0, 1) be such that q ≤ r and q > pr. Let F be a random family of m
subsets of a given set X with Bernoulli distribution in [q, r], and let S be a random subset of X
with Bernoulli distribution in [0, p]. Then in the trie constructed for the family F , the expected
number of visited nodes by the subset checking procedure for S is at most

(

1 + p

p
+

1

q − pr

)

mlogw (1+p),

where w = 1+p
1+pr−q .

Proof Let f(S,F) be a function which counts the visited nodes in the trie constructed for F by
subset checking procedure for S. We may consider it as a random variable, since S and F are
random. Let E[f(S,F)] be the expected number of visited nodes.

By the definition of the the expected value

E[f(S,F)] =
∑

S,F

f(S,F)P[S,F ],

where the sum is in the probabilistic space over all possible sets S and families F with m sets,
and P[S,F ] is the probability of occurring S and F . Because choosing S and F is independent,
we have that

E[f(S,F)] =
∑

S

∑

F

f(S,F)P[S]P[F ].

We define the function fh(S,F) which counts the visited nodes only at the level h in the
constructed trie. If h is larger that the cardinality of the universe then fh(S,F) = 0. So we have:

f(S,F) =

∞
∑

h=0

fh(S,F)

E[f(S,F)] =
∑

S

∑

F

∞
∑

h=0

fh(S,F)P[S,F ]

=

∞
∑

h=0

∑

S

∑

F

fh(S,F)P[S,F ]

=

∞
∑

h=0

E[fh(S,F)]
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Consider F as a subtrie of the complete trie. Then fh(S,F) can be written as a sum over the
nodes in the complete trie at the height h:

∑

x at height h

g(x, S,F),

where g(x, S,F) is an indicator function taking 1 if the node x is visited and 0 otherwise. So we
have that

E[fh(S,F)] =
∑

x at height h

E[g(x, S,F)].

We will estimate now probability that a node is visited at the height h. Let x be a node in
the complete trie with the path from the root with exactly i ones and h − i zeros. The node
is visited if and only if (1) the searching procedure for a subset of S would reach the node in
the complete trie (containing all possible sets) and (2) the node belongs to the constructed trie.
These two conditions are independent, since (1) depends only on S and (2) only on F . We may
define therefore two indicator functions g′(x, S) which takes 1 if and only if the first condition
holds and g′′(x,F) which takes 1 if and only if the second condition holds.

We bound the probability that condition (1) holds. It holds if and only if S contains all the
elements corresponding to ones in the path (otherwise the search does not go into the correspond-
ing branch). Since the probability of containing each element is in [0, p], the probability that the
condition (1) holds does not exceed pi. Similarly we bound the probability that condition (2)
holds. It holds only if there exists a set in F whose first h elements correspond to the path of the
node (in fact, this condition is necessary, but not sufficient, because of truncating paths). The
probability that a single subset has a required sequence of the first h elements, with exactly i
ones and h− i zeros, in view of the assumption on Bernoulli distribution in [q, r], can be bounded
from above by ri(1−q)h−i. Since F contains m elements, the probability that condition (2) holds
may be upper bounded by min{1,mri(1 − q)h−i}. Summarizing, for a node x with i ones and
h− i zeros on the path we have:

g(x, S,F) = g′(x, S)g′′(x,F)

E[g′(x, S)] =
∑

S

P[S]P[S has specified i elements] ≤ pi

E[g′′(x,F)] =
∑

F

P[F ]P[F has a set with i and without h− i specified elements]

≤ min{1,mri(1− q)h−i}

Now we can group the nodes at the height h, which have the same number of ones on the
path and we can sum over these groups of the nodes, obtaining:

E[fh(S,F)] =
∑

x at height h

E[g(x, S)g(x,F)] ≤
h
∑

i=0

(

h

i

)

pimin{1,mri(1− q)h−i}.

This yields two bounds that will be used to estimate

E[f(S,F)] =
∞
∑

h=0

E[fh(S,F)].

Let t = ⌊logw m⌋, where w = 1+p
1+pr−q . We will split up the sum above into two parts: the first

one that sums over the levels from 0 to t, and the second one that sums from t+ 1 to n.
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Case 1. We estimate
∑t

h=0 E[fh(S,F)]. For g(x,F) we use in this case the trivial bound
g(x,F) ≤ 1. So, we have

E[fh(S,F)] ≤
h
∑

i=0

(

h

i

)

pi = (1 + p)h,

and consequently,

t
∑

h=0

E(fh(S,F)) ≤
t
∑

h=0

(p+ 1)h =
(1 + p)t+1 − 1

p
.

Substituting t = ⌊logw m⌋ yields

(p+ 1)t+1 − 1

p
=

(1 + p)⌊logw m⌋+1 − 1

p

≤ (1 + p)(p+ 1)logw(m) − 1

p

=
(1 + p)mlogw(1+p) − 1

p

<
(1 + p)

p
mlogw(1+p)

Case 2. We estimate
∑n

h=t+1 E[fh(S,F)]. For this case we have

E[fh(S,F)] ≤
h
∑

i=0

(

h

i

)

pimri(1 − q)h−i = m(1 + pr − q)h,

and consequently,

∞
∑

h=t+1

E[fh(S,F)] ≤
∞
∑

h=t+1

m(pr − q + 1)h

=

∞
∑

h=0

m(1 + pr − q)h+t+1

≤
∞
∑

h=0

m(1 + pr − q)h+logw m

=

∞
∑

h=0

m
(

mlogw(1+pr−q)(1 + pr − q)h
)

= mlogw(w)+logw(1+pr−q)
∞
∑

h=0

(1 + pr − q)h

(note that (1 + pr − q) < 1, since by assumption q > pr)

< mlogw((1+pr−q)w) 1

q − pr

=
1

q − pr
mlogw(1+pr−q) 1+p

1+pr−q

=
1

q − pr
mlogw(1+p)
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Combining both the cases we obtain

E[f(S,F)] <
1 + p

p
mlogw(p+1) +

mlogw(1+p)

q − pr
=

(

1 + p

p
+

1

q − pr

)

mlogw (1+p),

as required.

The bound of the theorem is essentially better for certain distributions than the trivial O(m)
bound, and this seems to be one of the major reasons for which our algorithm is so efficient.

If m is very large relative to n, it is possible to get a better (and simpler) bound:

Theorem 5 Consider sets whose elements are from a finite n-element universe. Let S be a
random set having [0, p]-bounded distribution. Then in the trie constructed for any family F the
expected number of visited nodes by the subset checking procedure for S is at most

(p+ 1)n − 1

p
,

and the bound is tight for some F .

Proof We follow the proof of 4, but we set t = n− 1. We only need considering the first case:

t
∑

h=0

E[fh(S,F)] ≤
n−1
∑

h=0

(1 + p)h =
(1 + p)n − 1

p
.

The bound is tight, since we can get the complete family F containing all possible sets, and
S containing each element with probability exactly p. Then we can observe that we can follow
only by equalities for E(f(S,F)), since g(x, S) = pi and g(x,F) = 1, so

∑t
h=0 E[fh(S,F)] =

∑n−1
h=0(1 + p)h in this case.

This leads immediately to the following corollary on asymptotic:

Corollary 1 If n is fixed, S contains each element with probability p independently and each
possible set has non-zero probability of being in F then:

lim
m→∞

E[S,F ] =
(1 + p)n − 1

p

This shows another reason, in addition to the function shape of the upper bound from Theo-
rem 4, why the distribution of queried sets is more important than that of stored sets. Therefore
our heuristic techniques such us reordering of the automaton states (4.4) prefer optimizing the
former even at the cost of worsening the distribution of stored sets.

7 Experiments

We perform a series of the following experiments for various n ≤ 350. For a given n, we generate
a random automaton A with n states and 2 input letters, check whether A is synchronizing and
if so, we find the reset length using the algorithm described above. On the basis of the obtained
results we estimate the expected reset length. Then we have performed similar experiments for
automata with k = 3, . . . , 10 input letters.
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Table 1 The comparison of average computation time and the maximum time for random automata.

n 50 100 150 200 250 300 350
Standard BFS/DFS 0.019 s 10.047 s 8 min 5 s – – – –
Our average time 0.005 s 0.021 s 0.13 s 1.09 s 8.24 s 55.74 s 6 min 28 s
Our maximum time 0.03 s 1.45 s 3.48 s 67.63 s 418.65 s 150 min 5 s 25 h 7 min

7.1 Computations

In the experiments we have used the standard model of random automata, where for each state
and each letter all the possible transitions are equiprobable. A random automaton with n states
and k input letters can be then represented as a sequence of kn uniformly random natural
numbers from [0, n − 1]. To generate high quality random sequences we have used the WELL
number generator (Panneton et al, 2006) (variants 1024 and 19937) seeded by random bytes
from Unix /dev/random device. For k = 2 input letters, we have computed exact results for
automata up to 7 states by checking all of them; for each 8 ≤ n ≤ 100 we have checked one
million automata, and for each 101 ≤ n ≤ 250 and n = 255, 260, . . . , 350 we have checked 10, 000
automata.

The computations have been performed mostly on 16 computers with Intel(R) Core(TM)
i7-2600 CPU 3.40GHz 4 cores and 16GB of RAM. The algorithm was implemented in C++ and
compiled with g++. Distributed computations were managed by a dedicated server and clients
applications written in Python.

7.2 Efficiency

The average computation time is about 100 up to 1000 times faster than the time of Trahtman’s
program TESTAS (Trahtman, 2003, 2006) for binary automata with 50 states. The reduction to
SAT used in (Skvortsov and Tipikin, 2011) seemed to be the fastest recently known algorithm
and the reported average time for 50 states automata is 2.7 seconds, and for 100 states automata
is 70 seconds. Our comparable results are less than 0.005 and 0.021 seconds, respectively (we
have used faster machines but the supplementary resulting speed-up should be not more than
by 2 times).

Table 1 presents the comparison of average computation times for our algorithm and the
standard BFS method. The programs were run with 16 GB limited memory. Standard BFS/DFS
is our optimized implementation of the standard BFS algorithm in the power automaton, which
additionally switch to DFS (analogous to Algorithm 4) when it runs out of memory. The BFS
alone was unable to process automata with 100 states or more due to its memory requirements.

The average times are relatively small because of rare occurrences of automata with long
reset words. So we present also the maximum computation time which is much larger than the
average one since it depends on the automaton generated. Our experiment did not find any really
“hard” example.

7.3 General results

Our experiment confirms that for the standard random automata model A(n) the probability
that the automaton is synchronizing tends to 1 as the number n of states grows (this conjecture
posed in (Skvortsov and Tipikin, 2011) has been verified recently by Berlinkov (2013)). In our
experiment, for n = 100, 2250 of one million automata turned out to be non-synchronizing
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Fig. 1 Experimental values of synchronization probability.

(0.225%), and for n = 300, only five of 10, 000 automata. For automata with 2 input letters and
up to 100 states the line of synchronization chance is presented in Figure 1.

We observe also that random automata are mostly not strongly connected. Moreover, as
mentioned in Subsection 4.3, if an automaton is synchronizing then the expected size of the
strongly connected sink component seems to tend to the value ≈ 0.7987n. We also noted that
the average length of the minimal synchronizing word in a random automaton is usually a little
larger than the length in the strongly connected automaton formed by its sink component.

7.4 The expected reset length

The main result of the experiments is the estimation of the expected minimal length of a syn-
chronizing word of an automaton A. We consider the infinite sequence of random variables ℓ(n)
defined as the reset length for a synchronizing automaton with n states. By E[ℓ(n)] we denote
the expected value of ℓ(n), and by V[ℓ(n)] its variance. Let ML(n) denotes the mean of reset
lengths of the automata with n states generated in our experiment.

In (Skvortsov and Tipikin, 2011), the authors assume that ML(n) is a good approximation
of E[ℓ(n)]. Usually, it is the Hoeffding’s inequality that is used to estimate how good is this
approximation. Unfortunately, the number of experiments performed in (Skvortsov and Tipikin,
2011) is far too small to make use of this inequality.

In contrast, our experiments allow to obtain a good estimation of the approximation error.
We have the following:

Theorem 6 Let M be the maximal reset length in the sample of m randomly generated automata
from the class A = A(n) of the synchronizing n-state automata. If r is the fraction of automata
in A having the reset length larger than M , then with probability 1− p

|ML(n)− E[ℓ(n)]| ≤ (1− r)M

√

log(2/p)

2m
+ r

n3 − n

6
.
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Proof We make use of the Hoeffding’s inequality (Hoeffding, 1963) given in the following form.
For 0 < p ≤ 1, with probability at least 1− p

|X − E[X ]| ≤ R

√

log(2/p)

2m
, (1)

where X = (X1 + . . .+Xm)/m is the empirical mean of random variables X1, . . . , Xm with the
same range R.

Since the distribution of ℓ(n) is highly asymmetric, one needs to combine this inequality with
the statistical fact that the maximal reset lengths obtained in the experiment are much smaller
than the known bounds and that larger lengths occur rarely.

Let r denotes the fraction of automata in A having the reset length larger than M , for
any fixed M > 0. First we assume that we sample only automata with the reset length ≤ M .
Denote the corresponding random variable by ℓ′(n). Applying the Hoeffding’s inequality, putting
X1 = . . . = Xm = ℓ′(n), and R = M we obtain

|ML(n)− E[ℓ′]| ≤ M

√

log(2/p)

2m
.

Let ℓ′′(n) be the reset length for a synchronizing automata with n states and ℓ(n) ≥ M . Then
we obtain

|ML(n)− E[ℓ]| ≤ (1 − r)|ML(n)− E[ℓ′]|+ r|ML(n)− E[ℓ′′]| ≤ (1− r)M

√

log(2/p)

2m
+ r

n3

6
.
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We have used the well-known bound n3−n
6 for the length of the shortest reset word. Taking M

to be the maximal reset length of the automata in the sample, we obtain the required result.

Assuming the Černý conjecture in the last term (n3 − n)/6 may be replaced by (n − 1)2

(giving essentially better estimation).
For n = 100, m = 106, we have obtained ML(n) ≈ 24.34, and the maximal reset length

M = 41. If the fraction of those automata in A with the reset length exceeding M = 41 is
greater than r = 0.00001, the probability than no automaton was generated with the reset
length > 41 is less than q = (1 − r)m = 0.00005. So we may assume that with a very high
probability r < 0.00001. Now, for p = 0.00005, it follows that with probability 1− p = 0.99995

|ML(n)− E[ℓ(n)]| ≤ 0.0943 + 1.666 < 1.68,

which means that the error is less than 1.68 (or 0.19 assuming the Černý conjecture). This
means that with high probability the expected length of the shortest reset word for synchronizing
automata with n = 100 states is close to our experimental result 24.34. Comparing this with the
results of Skvortsov and Tipikin (Skvortsov and Tipikin, 2011), we note that, for automata with
100 states, they also have obtained the expected length close to 24, but taking into account the
size of the sample m = 200, no reasonable estimation of the error can be obtained in this way
(even values of p as large as p = 0.1 lead to a few hundred percent error).

7.5 New approximation

We have observed that the approximation of the mean length ML(n) ≈ 1.95n0.55 proposed in
(Skvortsov and Tipikin, 2011) is inflated. We have been searching for an approximation function
by filling some predefined templates with different constants and comparing them by minimiz-
ing the sum of squares of differences with the experimentally computed estimation. Based on
currently available data, we propose a new more precise experimental approximation for the
expected reset length for automata with 2 input letters. Note, that our approximation below is
supported also by Theorem 6.

E[ℓ(n)] ≈ 2.5
√
n− 5. (2)

Comparison of both the proposed functions with the experimental results is presented in
the Figure 2. The dashed line is the approximation proposed by Skvortsov and Tipikin, while
our approximation is covered almost exactly by dots representing experimental results. Small
triangles above and below two lines represent, respectively, the maximal and minimal reset lengths
found. We observe that the expected length seems to belong to Θ(

√
n) anyway.

7.6 Distribution and variance

The results of our experiment allow to compute an approximated probability distribution of ℓ(n)
for each tested n. Example distributions are shown in Figure 3. They are very similar for larger
n. For n = 7 states the exact distribution is presented.

We have also confirmed the observations from (Skvortsov and Tipikin, 2011) that the variance

V[ℓ(n)] is a growing function. We however do not confirm that the fraction
√

V[ℓ(n)]

E[ℓ(n)] seems to
tend to 0 as n goes to infinity. The graph we have obtained (Figure 4) does not exclude the
possibility that the fraction converges to some positive constant.
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7.7 Automata with more than 2 input letters

We have performed also a series of experiments to see if and how the situation changes in case
of automata with more than 2 input letters. The results shows that certain trends observed for
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Fig. 6 Distributions of the reset length for automata with n = 100 states and k input letters.

automata with 2 letters continue in a regular way. We have used random samples of 10, 000
automata for each presented number of states.

The mean reset length decreases when k increases, but the corresponding graphs have similar
regular shape. The results of our experiments are pictured in Figure 5. In Figure 6 distributions
of the reset length are presented for automata with n = 100. For better visibility only results
for k = 2, 3, 4, 6, 10 are presented. They show clearly the trend of decreasing intervals of length
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Fig. 7 Relative standard deviations of reset length for automata with k input letters.

values with higher probabilities. Finally, Figure 7 shows relative standard deviations
√

V[ℓ(n)]

E[ℓ(n)] for
automata with k input letters. Again the shape of graphs is similar.

In conclusion, we may say that our experiments did not show any differences in behavior of
automata depending on the size of the input alphabet, except for the expected fact that reset
lengths decrease as the size increase.

References

Ananichev D, Volkov M (2003) Synchronizing monotonic automata. In: Developments in Lan-
guage Theory, LNCS, vol 2710, pp 111–121

Ananichev D, Gusev V, Volkov M (2010) Slowly synchronizing automata and digraphs. In: Math-
ematical Foundations of Computer Science 2010, LNCS, vol 6281, pp 55–65

Ananichev D, Gusev V, Volkov M (2012) Primitive digraphs with large exponents and slowly
synchronizing automata. Zapiski Nauchnyh Seminarov POMI [Kombinatorika i Teorija Grafov
IV] 402:9–39, in Russian

Batsyn M, Goldengorin B, Maslov E, Pardalos PM (2013) Improvements to MCS algorithm for
the maximum clique problem. Journal of Combinatorial Optimization pp 1–20

Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E (2003) DNA molecule provides a com-
puting machine with both data and fuel. Proceedings of the National Academy of Sciences
100(5):2191–2196

Berlinkov M (2010) Approximating the minimum length of synchronizing words is hard. In:
Computer Science – Theory and Applications, LNCS, vol 6072, pp 37–47

Berlinkov M (2013) On the probability to be synchronizable. http://arxiv.org/abs/1304.5774
Broy M, Jonsson B, Katoen JP, Leucker M, Pretschner A (2005) Model-Based Testing of Reactive

Systems: Advanced Lectures (Lecture Notes in Computer Science). Springer-Verlag New York,
Inc.



32 Andrzej Kisielewicz et al.

Černý J (1964) Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3):208–216, in Slovak

Chmiel K, Roman A (2011) COMPAS - A computing package for synchronization. In: Imple-
mentation and Application of Automata, LNCS, vol 6482, pp 79–86

Devroye L (1982) A note on the average depth of tries. Computing 28:367–371
Eppstein D (1990) Reset sequences for monotonic automata. SIAM Journal on Computing

19:500–510
Gerbush M, Heeringa B (2011) Approximating minimum reset sequences. In: Implementation

and Application of Automata, LNCS, vol 6482, pp 154–162
Higgins P (1988) The range order of a product of i-transformations from a finite full transfor-

mation semigroup. Semigroup Forum 37:31–36
Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Amer

Statist Assoc 58(301):13–30
Jürgensen, H (2008) Synchronization. Information and Computation 206(9-10):1033–1044
Kari J (2002) Synchronization and stability of finite automata. Journal of Universal Computer

Science 8(2):270–277
Kisielewicz A, Szykuła M (2013) Generating small automata and the Černý conjecture. In:

Implementation and Application of Automata, LNCS, vol 7982, pp 340–348
Kisielewicz A, J K, M S (2013) A Fast Algorithm Finding the Shortest Reset Words. In: Com-

puting and Combinatorics, LNCS, vol 7936, pp 182–196
Kowalski J, Szykuła M (2013) A new heuristic synchronizing algorithm.

http://arxiv.org/abs/1308.1978
Kudłacik R, Roman A, Wagner H (2012) Effective synchronizing algorithms. Expert Systems

with Applications 39(14):11,746–11,757
Martyugin P (2009) Complexity of problems concerning reset words for some partial cases of

automata. Acta Cybernetica 19:517–536
Martyugin P (2011) Complexity of problems concerning reset words for cyclic and Eulerian

automata. In: Implementation and Application of Automata, LNCS, vol 6807, pp 238–249
Morrison D (1968) PATRICIA – practical algorithm to retrieve information coded in alphanu-

meric. Journal of the ACM 15:514–534
Olschewski J, Ummels M (2010) The complexity of finding reset words in finite automata. In:

Mathematical Foundations of Computer Science 2010, LNCS, vol 6281, pp 568–579
Panneton F, L’Ecuyer P, Matsumoto M (2006) Improved long-period generators based on linear

recurrences modulo 2. ACM Transactions on Mathematical Software 32(1):1–16
Podolak IT, Roman A, Jędrzejczyk D (2012) Application of hierarchical classifier to minimal

synchronizing word problem. In: Artificial Intelligence and Soft Computing, LNCS, vol 7267,
pp 421–429

Rho JK, F S (1993) Minimum length synchronizing sequences of finite state machine. In: Pro-
ceedings of the 30th ACM/IEEE Design Automation Conference, DAC ’93, pp 463–466

Roman A (2009a) Genetic algorithm for synchronization. In: Language and Automata Theory
and Applications, LNCS, vol 5457, pp 684–695

Roman A (2009b) Synchronizing finite automata with short reset words. In: Applied Mathematics
and Computation, ICCMSE-2005, vol 209, pp 125–136

Sandberg S (2005) Homing and synchronizing sequences. In: Model-Based Testing of Reactive
Systems, LNCS, vol 3472, pp 5–33

Skvortsov E, Tipikin E (2011) Experimental study of the shortest reset word of random automata.
In: Implementation and Application of Automata, LNCS, vol 6807, pp 290–298

Stewart WJ (1994) Introduction to the Numerical Solution of Markov Chains. Princeton Uni-
versity Press



Computing the Shortest Reset Words of Synchronizing Automata 33

Stewart WJ (2000) Numerical methods for computing stationary distributions of finite irreducible
markov chains. In: Computational Probability, vol 24, pp 81–111

Szpankowski W (1991) On the height of digital trees and related problems. Algorithmica 6(1-
6):256–277

Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM Journal on Computing
1(2):146–160

Trahtman AN (2003) A package TESTAS for checking some kinds of testability. In: Implemen-
tation and Application of Automata, LNCS, vol 2608, pp 228–232

Trahtman AN (2006) An efficient algorithm finds noticeable trends and examples concerning the
C̆erný conjecture. In: Mathematical Foundations of Computer Science, LNCS, vol 4162, pp
789–800

Volkov M (2008) Synchronizing automata and the C̆erný conjecture. In: Language and Automata
Theory and Applications, LNCS, vol 5196, pp 11–27

Xue G, Sun S, Du DHC, Shi L (2000) An Efficient Algorithm for Delay Buffer Minimization.
Journal of Combinatorial Optimization 4(2):217–233


