
Implementing Tales of Tribute as a
Programming Game

(Implementacja Tales of Tribute
jako gry programistycznej)

Dominik Budzki Damian Kowalik Katarzyna Polak

Praca inżynierska

Promotor: dr Jakub Kowalski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

24 lutego 2023

Abstract

The goal of our project was to create a tool that allows users to write AI bots for
„Tales of Tribute” – a card game that is part of the massively popular multiplayer
online role-playing video game „The Elder Scrolls Online” (ESO). To the best of our
knowledge, this is the first approach to recreate this game outside of the original
implementation.

We developed an engine that simulates a game environment and a graphical
user interface that allows playing against AI. Such an environment opens up new
opportunities not only for casual players (that would like to test their skills outside
of ESO) but also for AI developers. In particular, we aim for our project to be a
basis for future AI competitions (similar to terminated Hearthstone AI Competition
at IEEE CoG conference).

In this thesis, we described the implementation of the engine, UI in Unity, and
how to implement bots. We also describe our implementations of a few basic AI
algorithms (including MCTS and Beam Search), and run experiments testing their
performance.

Celem naszego projektu było stworzenie narzędzia, które pozwoli użytkownikom
na programowanie botów do „Tales of Tribute” – karcianej gry, która jest częścią
bardzo popularnej wieloosobowej gry fabularnej „The Elder Scrolls Online” (ESO).
Według naszej wiedzy, jest to pierwsza próba odtworzenia gry poza oryginalną im-
plementacją.

Napisaliśmy silnik symulujący środowisko gry oraz graficzny interfejs użytkow-
nika, który pozwala na grę przeciwko sztucznej inteligencji. Takie środowisko otwiera
nowe możliwości nie tylko przed zwykłymi graczami (którzy mogą przetestować
swoje umiejętności poza ESO), ale także przed programistami SI. Chcielibyśmy,
żeby nasz projekt był podstawą przyszłych zawodów w pisaniu botów (podobnych
do nieistniejącego już Hearthstone AI Competition na konferencji IEEE CoG).

W pracy opisaliśmy implementację silnika, interfejsu w Unity oraz jak zaimple-
mentować agentów przy użyciu udostępnionych przez nas narzędzi. Opisaliśmy także
implementację kliku podstawowych algorytmów sztucznej inteligencji (na przykład
beam search’a oraz MCTS-a) i przeprowadziliśmy testy mierzące ich efektywność.

Contents

1 Introduction 9

2 AI Programming Competitions 11

2.1 Collectible Card Games . 12

2.2 Dominion . 12

2.3 Hearthstone . 13

2.4 Legends of Code and Magic . 13

3 Tales of Tribute 15

3.1 Overview of the Game rules . 15

3.1.1 Tavern . 15

3.1.2 Cards . 16

3.1.3 Patrons . 16

3.1.4 Win Conditions . 17

4 Engine Implementation 19

4.1 Technology . 19

4.2 Project Structure . 19

4.2.1 Engine Structure . 20

4.3 Overview of Important Objects . 21

4.4 Combos and Choices . 21

4.5 Game State Representation . 23

4.5.1 Full Game State . 23

4.5.2 Limited Game State . 24

5

6 CONTENTS

4.5.3 Simulating Moves . 25

4.5.4 Seeded Game State . 26

4.6 API . 26

4.7 Cards and Effects . 27

4.7.1 Card’s Common ID . 28

4.7.2 Unique Cards and Unique Effects 29

4.8 Patrons . 29

4.9 Running Games Directly With Engine 30

4.10 CLI Game Runner . 30

4.10.1 Usage . 30

4.10.2 Examples . 32

4.11 Other Features . 33

4.11.1 Deterministic Games . 33

4.11.2 Logging . 33

4.12 Testing . 34

4.12.1 Testing with FullGameState 34

4.12.2 Testing with Bots . 34

5 Bot interface 37

5.1 Game Management . 37

5.2 Bot Implementation . 37

5.3 Tools Available to Bots . 38

5.3.1 Simulations . 38

5.3.2 Seeding . 39

5.3.3 Logs . 39

5.3.4 Completed Actions . 39

6 ScriptsOfTribute User Interface 41

6.1 Presentation . 41

6.2 Usage . 43

6.2.1 Adding Bots . 43

CONTENTS 7

6.2.2 Game Settings . 44

6.2.3 Bot Moves . 45

6.3 Analysis Tools . 46

6.3.1 Logs . 46

6.3.2 Moves History . 46

6.4 Implementation . 47

6.4.1 Game Manager . 47

6.4.2 Communication with Engine 47

6.4.3 Handling Bot Objects . 48

6.5 Building Project . 48

7 Bot implementation 51

7.1 Similar Games and Their AI . 51

7.2 Basic Bots . 52

7.2.1 Random Bot . 52

7.2.2 Random* Bot . 52

7.2.3 MaxPrestige Bot . 52

7.2.4 PatronFavors Bot . 52

7.2.5 MaxAgent Bot . 53

7.3 Improving Basic Bots . 53

7.4 Advanced Bots . 54

7.4.1 Decision Tree Bot . 55

7.4.2 Heuristic . 55

7.4.3 Random Simulation Bot . 56

7.4.4 MCTS Bot . 56

7.4.5 Beam Search Bot (with Simulated Annealing) 57

7.5 Comparisions and Conclusions . 58

8 Conclusions 61

Bibliography 63

Chapter 1

Introduction

The goal of our project was to create a tool that allows users to write bots for Tales
of Tribute – a card game which is part of the massively popular multiplayer online
role-playing video game „The Elder Scrolls Online”. Our work provides future users
with an engine that simulates a game environment and a user interface that allows
testing their AI. With these features, users can quickly improve bots’ performance
in the game. We also created sample bots to test our tool and see how basic AI
techniques work in this game.

Games are commonly used as a testbed for artificial intelligence algorithms,
improving the process of learning and research. Because of that, some scientific con-
ferences hold official AI competitions (for example, IEEE Conference on Games). In
the future, we also want to organize an event based on our project. Our project is
unique because it connects the programming community with regular ESO players,
so our new potential users can be people without solid computer science knowl-
edge. They can use our tool to improve their skills and test strategies, which is an
additional feature inaccessible in the original game.

Writing bots for games can be an exciting and fun experience, even if we ignore
the possibility of competition. This is a great opportunity to deepen our understand-
ing of the game, its mechanism and system. It can also improve programming and
problem-solving skills. Often, approaches polished on games are then transferred,
for example, to business. All these things together make our project needed and
useful.

9

Chapter 2

AI Programming Competitions

AI contests in writing bots for games have become increasingly popular in recent
years. These contests provide a platform for a community of players and computer
scientists to showcase their skills in programming and AI by creating bots that can
play a given game. There are both hobby-level solutions and reserach competitions
that take place regularly.

Probably the best platform for AI contests is CodinGame1, which regularly
holds competitions for various games. These contests are open to users of all skill
levels and allow competing against each other. In contrast to other platforms, the
CodinGame community perfectly balances being competitive and helpful for novice
persons. These contests are not only about writing bots because, in the past, some
problems were also about optimizations or algorithms so everyone could find some-
thing interesting. CodinGame also has many problems that can be solved between
contests, which makes people attached to this platform.

In addition to the CodinGame platform, AI games contests are held at aca-
demic conferences such as the Conference on Games (COG)2, Congress on Evolu-
tionary Computations (CEC)3, Genetic and Evolutionary Computation Conference
(GECCO) 4. These conferences connect researchers, students and AI professionals
to showcase their work and share knowledge. The contests at these conferences
are often more complex and require a higher skill level. However, they also allow
researchers to impact the field significantly and are often base for publications.

1https://www.codingame.com/
2https://ieee-cog.org/
3http://www.wikicfp.com/cfp/program?id=411
4https://sig.sigevo.org/index.html/tiki-index.php?page=GECCOs

11

https://www.codingame.com/

12 CHAPTER 2. AI PROGRAMMING COMPETITIONS

2.1 Collectible Card Games

Collectible Card Games (CCGs) are card games where players collect and build
decks representing various characters, creatures, spells, and abilities. The first CCG
was „Magic: The Gathering”, which was created in 1993 and is still very popular
today.

CCGs have a few things in common; the most important ones are:

• A large number of cards available and each card has its unique abilities and
attributes.

• Significant randomness in game because of large number of cards. As players
construct their decks, they must take into account the likelihood of drawing a
specific card at a specific time.

• Deckbuilding - players must carefully choose which cards to include in their
decks, considering each card’s strengths and weaknesses and how they will in-
teract with the other cards in the deck. Deckbuilding requires a lot of strategic
planning and decision-making. Tales Of Tribute represents the deckbuilding
subgenre, so the deck is built during the game not before as in e.g., Magic:
The Gathering, or Hearthstone.

2.2 Dominion

Dominion is considered to be the first representative of the deckbuilding subgenre
where the player’s deck is build during game. The game was designed by Donald X.
Vaccarino and was first published in 2008.

Dominion is similar to Tales of Tribute in many aspects:

• Players start with a small, basic deck of cards and by them, they can acquire
more powerful cards to add to their deck.

• There exist supply of cards (in Tales of Tribute tavern), which represents the
cards that are available for players to acquire during the game. These cards
are laid out on the table at the start of the game and can be depleted as players
acquire them.

• The win condition is to get a specific amount of victory points before the
opponent (prestige in Tales Of Tribute).

This game appears in several academic papers and theses, e.g., [1, 2, 3, 4].

2.3. HEARTHSTONE 13

2.3 Hearthstone

Hearthstone is a popular digital CCG which has a large competitive scene. A prime
example would be the Hearthstone AI Competition[5], which has been held three
times (2018-2020). The competition is designed to challenge developers to develop
stepwise the best AI agent for the game. It has been well-received by the AI and
gaming communities, especially if we look at the number of participants (about 50
every year). Participants could submit their work in one of the two tracks:

• „Premade Deck Playin’–track: write an agent that will have the best perfor-
mance on known and unknown decks.

• „User Created Deck Playin” –track: the task is to create a deck that will beat
other decks.

Thanks to this contest, several scientific papers were created. [6, 7, 8, 9] This
contest would not be possible without the SabberStone5 engine, written in C#
and mainly used to simulate games. In our project, we tried to include the best
of SabberStone, which served as our inspiration. Some similarities: the bot must
inherit from the AbstractAgent class, the ability to simulate a game, a similar Game
class that represents a single game, etc.

2.4 Legends of Code and Magic

The game ”Legend of Code and Magic” (LOCM) is an example of (CCG) that has
gained popularity since its first contest in 2018 on the Codin Game platform. Since
then, over 2,500 people have participated in that contest. Since 2019 the game was
also featured at the Congress on Evolutionary Computations(CEC) and Conference
On Games(COG), where participants could showcase their bot-writing skills.

LOCM was inspired by „The Elder Scrolls: Legends” and there are also slight
similarities to the „Hearthstone”. Players use a deck of cards representing charac-
ters, spells, buffs/debuffs. There are two main phases in this game: deck building
where around 30 cards are selected and battle phase where players can summon
monsters, use spells and attack.

Based on this game several publication have been published.[10, 11, 12, 13]

5https://hearthsim.info/sabberstone/

https://hearthsim.info/sabberstone/

Chapter 3

Tales of Tribute

Tales of Tribute is a two-player deck-building card game released in June 2022
with an expansion „High isle” to the popular MMO RPG game „The Elder Scrolls
Online”. It features several decks of cards that differ in playing style. Each deck is
represented by a Patron. These decks can be acquired during ESO gameplay.

3.1 Overview of the Game rules

At the beginning of the game, players choose a total of four decks of cards. The
starting player chooses first and fourth, while the second player chooses second and
third. Then the main part of the game begins. The Starter cards go to the players,
while the rest are shuffled and found in the Tavern. The player moving second
receives one Coin at the start. Each turn player draws five cards from his draw pile.
Used cards go to the so-called Played pile, with an exception of Agent cards. Once
the turn is over Cards that were played go to the Cooldown pile. When the Draw
pile gets empty, and a player needs to draw a card, the Cooldown pile is shuffled
and put in place of the Draw pile.

In Tales of Tribute, there are three main resources: Coins, Prestige, and Power.
Coins are used to buy cards from the Tavern or to buy Patron’s abilities. At the
end of the turn unused Coins are lost. Power can be spent to attack the opponent’s
Agents or, just like Coin, to buy some of the Patron’s favor. Unspent Power tran-
sitions to Prestige at the end of the turn. Prestige acts as the scoring in Tales of
Tribute and one of the win conditions is to amass the most Prestige.

3.1.1 Tavern

A tavern is a place where the player currently playing can use Coins to purchase
cards. There are always five cards available. After buying one card, another one
appears in its place, drawn from a shuffled Tavern deck (initially consisting of all

15

16 CHAPTER 3. TALES OF TRIBUTE

cards belonging to the decks chosen by the players).

3.1.2 Cards

The cards we can play are divided into types:

• Starter cards: Cards that are in the player’s pool at the beginning of the
game. Each Patron deck has one starter card with an exception of the neutral
„Treasury” deck, which gives the Player six Gold cards with a „Coin +1”
effect.

• Action cards: When played, they will carry out the relevant action before
entering player’s Cooldown Pile.

• Agent cards: When played, they will be placed on the board and can be
activated every turn to use their effects. They are distinguished by their health,
which if reduced to zero will move Agent to the Cooldown pile.

• Contract Action cards: Similar to Action cards are put into play as soon as
they are acquired but go into the Tavern pile after enacting its effects.

• Contract Agent cards: Immediately placed on the board upon buying. When
knocked out either by effect or by health equal to 0, they go back to the Tavern.

The cards have effects that are activated when played and extended effects that will
be triggered when cards from the same deck are combined in the same turn.
There are more than a dozen different effects in the game, some of them very simple,
such as „Coin +n” which increases the number of Player’s coins by n. There are
also more complicated effects that change the situation on the board, but require
the player to make a choice, e.g. „Knockout agents”, which allows the player to get
rid of the opponent’s agents, „Replace n cards in Tavern” - allows you to replace n
cards in the tavern, or „Destroy cards” which is a well-known effect in this type of
card games, the player has the opportunity to remove some of his cards in order to
shrink his deck.

3.1.3 Patrons

Each deck in Tales of Tribute is represented through a Patron. Each Patron has a
special skill that has a cost, but in return provides various benefits. Patrons, except
for the neutral Treasury, have a ”status” of endorsement. They can support any of
the players or be neutral. Purchasing a Patron’s skill results in the support indicator
shifting toward the player. Every turn Player can use one Patron skill unless he gets
an effect that increases the amount of available Patron calls.
Patrons available in TalesOfTribute and their skills:

3.1. OVERVIEW OF THE GAME RULES 17

Patron Activation cost Effect gain

Ansei 2 Power 1 Coin in this and every turn Ansei
favors you

Crows All Coins, needs atleast 1 Power equal to #Coins -1

Pelin 2 Power Return an Agent from your
Cooldown pile to the top of your
deck

Rajhin 3 Coins place ’Bewilderment’ Card in oppo-
nent’s Cooldown pile

Psijic 4 Coins Knock out one opponent’s active
Agent

Hlaalu Sacrifice one of your cards Prestige equal to its Coin cost - 1

Orgnum 3 Coin Gain Power equivalent to number
of your cards, depending on favor
level. If Favors you already, get
Maormer Boarding Patry card in
your Cooldown pile

Red Eagle 2 Power Draw a card

3.1.4 Win Conditions

In Tales of Tribute, you can win the game in several ways. When one player gains at
least 40 prestige, the opponent in his turn will have to gain more to stay in the game.
If he fails, then he loses. If he succeeds then the game goes into a ”Sudden death”
situation. At this stage of the game, the player who fails to top his opponent’s score
in his turn loses. The upper limit is 80 prestige. The player who reaches this limit
wins automatically.

A player can also win if he gains the favor of all four patrons in his turn.

Chapter 4

Engine Implementation

The engine is the heart of the project. It is implemented in C#, as a library,
and contains all logic related to the game rules, packaged into one interface –
ScriptsOfTributeAPI – that is used by ScriptsOfTributeUI and GameRunner.

4.1 Technology

The engine is written in C#. We chose this language because it is modern, fast,
easy to pick up and use, and also cross-platform. Furthermore, C# is the native
language of the Unity game engine. This was also very important to us, because
one of the main goals of the project was to provide a convenient UI for the user
to test and play against his bots. Due to the limitations of Unity, we target .NET
Standard 2.1 framework version, which is not the newest and lacks a few features,
but it is not deprecated - it is still supported and secure.

We use several libraries in conjunction with the language. Newtonsoft.Json
[14] library is used to parse JSON. The newest versions of .NET Framework have this
capability built-in, however, this is one of the things missing in .NET Standard. For
testing, we use Xunit [15]. CLIGameRunner uses System.CommandLine [16] library
to parse arguments. This package is still in preview, however, it has many functions
and works well for our use case. Furthermore, it is developed by Microsoft, and it
will most likely be the standard way to parse arguments in C# command line apps
in the future if it is not already.

4.2 Project Structure

In C#, applications are contained inside projects. These can be executable files, or
libraries. Projects live inside a solution. A solution can have multiple projects
[17].

19

20 CHAPTER 4. ENGINE IMPLEMENTATION

In our case, we have a single solution that contains tests, Engine, CLI Game Runner,
and our bots in separate projects. ScriptsOfTributeUI is contained in a com-
pletely separate solution, because this makes working with Unity much easier.

4.2.1 Engine Structure

BoardManager is the heart of the engine. It holds all objects related to the behaviour
of the game, and acts as a proxy between them and the ScriptsOfTributeAPI. For
example, when the user asks the API to play a card, BoardManager makes sure that
the CurrentPlayer has this card from its hand removed, and CardActionManager
executes its effects with all pending combos. It uses following objects for executing
most of the logic of the game:

• CardActionManager – This class is responsible for executing effects, taking
into accounts combos, and handling choices.

• List<Patron> – Patrons that are in the current game. They can be called to
perform effects associated with them, and contain information such as which
player they favour.

• Tavern – Representation of Tavern, it holds currently available cards, and a
queue of upcoming cards that will replace the card that is bought. It also
exposes some helper functions for things such as replacing a card.

• PlayerContext – Holds both current and enemy player and makes sure to
swap them at the end of each turn. Player objects contains fields such as
the list of cards representing the player’s hand or his agents, and also exposes
some functions for things such as discarding cards.

CardActionManager is the most complex out of all of these classes. It also uses
several internal classes to handle things such as combos and to decide what to do as
a follow up to a resolved choice.

Most of the classes that hold information, such as Tavern, Player, or Choice
have corresponding read-only objects that expose copies of relevant fields, such as
the list of available cards in case of Tavern. These objects are then used as part of
game state representation.

The API is not only a proxy for BoardManager. It is responsible for handling and
gracefully representing errors, and also has some functions of its own, like generating
list of possible moves.

Other than that, the AI namespace contains the interface for bots to use, and
also the ScriptsOfTribute class. This is the object used to run games between the
bots with features like logging or timeouts.

Later sections of this chapter go into more detail about many of these classes.

4.3. OVERVIEW OF IMPORTANT OBJECTS 21

4.3 Overview of Important Objects

This section introduces some objects that are used in the engine and knowing them
is important for understanding other sections.

• EndGameState – contains information about how the game ended. It has a
Reason field that indicates why the game ended, which can for example be
TURN_TIMEOUT or INCORRECT_MOVE. It also contains ID of the winning player
(unless the game ended to reason such as an internal failure) and a string
containing additional context about why the game ended, for example, in case
of incorrect move it contains the move and a list of all other correct moves
that were possible and should have been played instead. API functions often
return EndGameState? – in most cases, it is null, but in case the player makes
a mistake, or his move ends the game, this object is returned to indicate this.

• Move – represents a move that a player can make. It contains a Type field, which
can be for example PLAY_CARD, END_TURN or ACTIVATE_PATRON. Depending on
the type, it also contains additional information, such as the card that is to be
played in case of PLAY_CARD move. Moves can be created using static methods
in Move class, for example: Move.PlayCard(card).

• Choice – represents a choice that the player has to make. It can be, for ex-
ample, a choice of which card to discard. Either cards or effects can be chosen,
depending on the card played. This object also contains some information
about the choice, including all possible items to choose, how many items need
to be chosen, or what the effect of the choice will trigger (for example: destroy
the chosen cards).

• ChoiceContext – this object lives inside a Choice and holds additional con-
text, including the card and effect, or the patron that triggered the choice.

4.4 Combos and Choices

Combos and choices were probably the two most complex mechanics to implement
in the engine. They are problematic, because they can interact in many complex
ways:

• Almost all actions performed by the user can end in either a failure (for ex-
ample: he plays a card that he doesn’t have in hand), a simple success (for
example: a card is played and the player gains 1 coin), or a choice. How to
represent all these possible results? How to handle the choices?

• Playing cards can trigger combos from previously played cards. That means
that playing a single card can result in multiple successes, a mix of successes

22 CHAPTER 4. ENGINE IMPLEMENTATION

and a failure, or, the worst of all: playing a single card can result in multiple
choices.

• All effects triggered by playing a card need to be executed in order, because
previous effects can affect the possibilities the in upcoming effects. Consider
this scenario: the player plays a card that has an effect that requires him to
make a choice to remove a card from tavern, but this play also triggers an
effect that requires the player to acquire a card in tavern. The second effect
has to execute after the first one had already completed, because it cannot
present the discarded card as one of the possibilities to acquire. And both of
these choices can have more simple effects interwoven between them.

• A choice can result in another choice. For example: consider a choice between
two effects: Coin 1 and Acquire 5. If the user chooses Acquire 5, another
choice needs to be resolved immediately - which card to acquire?

In order to solve this, we created an ExecutionChain. This class holds a queue
of effects that need to be executed after performing an action. This chain is con-
sumed internally in the engine. It enacts all effects in order, and does different things
based on the result of that execution:

• If it ends in a success, the loop continues.

• If it ends in a failure, the game ends, because either one of the bots made a
mistake, or an internal engine failure occured.

• If it ends in a choice, the execution is paused. This choice is set as a currently
pending choice in the engine, and the board state changes to CHOICE_PENDING.
In that state, the API does not allow any other moves other actions to be
performed other than completing the choice. If using ScriptsOfTribute, the
control is immediately returned to the bot, and he has to make a move of type
Choice. Even when the player’s choice is provided, the execution of this effect
is not over – the engine cannot immediately move to the next effect. It needs
to first provide the objects that player chose to ComplexEffectExecutor class,
which, based on the choice’s follow-up, will enact appropriate actions. This
can also result in another choice, as described above, which would need to be
resolved before moving to the next effect.

The implementation of combos is less complicated. Each player has a ComboContext
object assigned, that resets upon the end of turn. When a card is played, this class
is responsible for providing the effects that this move should induce. For each pa-
tron, it holds an array of lists of effects. Each item of the array, from one to four,
represents activation, or one of the combos, respectively. When the card is played,
all its effects are added to appropriate lists - activation gets added to the first list,

4.5. GAME STATE REPRESENTATION 23

combo 3 gets added to the third list. After that, based on current combo counter
that increments with each card of the same type played, all the effects from the
arrays – up to that current combo counter – are collected and returned. Next, they
are added to the ExecutionChain and begin executing.

4.5 Game State Representation

The engine needs to be able to represent game state in a concise manner, so that
it can be passed to bots so they have knowledge of what is happening, or, in case
of Unity, it can be used to populate main board view. There are several objects
representing the state, but the main one is FullGameState.

4.5.1 Full Game State

1 public class FullGameState

2 {

3 public readonly SerializedPlayer CurrentPlayer;

4 public readonly SerializedPlayer EnemyPlayer;

5 public readonly PatronStates PatronStates;

6 public readonly List <PatronId > Patrons;

7 public readonly List <UniqueCard > TavernAvailableCards;

8 public readonly List <UniqueCard > TavernCards;

9 public readonly BoardState BoardState;

10 public readonly SerializedChoice? PendingChoice;

11 public readonly ComboStates ComboStates;

12 public readonly List <UniqueBaseEffect > UpcomingEffects;

13 public readonly List <UniqueBaseEffect > StartOfNextTurnEffects;

14 public readonly List <CompletedAction > CompletedActions;

15 public readonly EndGameState? GameEndState;

16 public readonly ulong InitialSeed;

17 public readonly ulong CurrentSeed;

18 public readonly bool Cheats;

19 }

This object contains all the information needed to recreate a game from a given
point in time, including all the cards in players’ hands, draw piles, cooldown piles,
and played piles. It also contains all the cards in tavern, both available to buy
and upcoming. The cards are ordered in a way that they are going to be drawn next,
and also current seed is stored, so that future card shuffling can be deterministic.

• PatronStates field contains information about patron favour.

• BoardState contains information about what state the board is in – it can
be NORMAL, or CHOICE_PENDING if there is a pending choice that needs to be
resolved before making another move.

24 CHAPTER 4. ENGINE IMPLEMENTATION

• PendingChoice – if it is not null, that means the next move that player makes
should be of type MAKE_CHOICE. It contains all information neede to make
that choice, including the effect/patron/card that caused it, list of possible
choices, and the minimum and maximum amounts of choices.

• ComboStates maps all patrons to the combo state that they are in. It contains
information about how many cards from that patron were already played, and
what combo effects are in queue to be trigered by playing next card of that
type.

• UpcomingEffects is a queue of effects that will be triggered after completing
pending choice - these effects usually appear when a card with an effect that
requires a choice was played, and that card also triggered a combo - in that
case, the effects in queue cannot be executed until the choice is completed.

• StartOfNextTurnEffects contains effects that the enemy player must com-
plete before he can make any other moves at the start of his turn. Currently,
there is only one such effect in the game, that requires the enemy to choose a
card to discard.

• CompletedActions contains all actions that were completed previously in the
game. This contains information about what cards were played, but also
what exact effects they triggered, which agents were attacked, which died
and similar. This is useful for bots to quickly be able to check what the
opponent did in his turn, but also for human players in Unity to quickly see
a history what happened in previous turns.

• InitialSeed is the seed that was generated at the beginning of the game or
was provided in the configuration.

• CurrentSeed is the seed that will be used to generate the next pseudo-random
number.

• Cheats – if this is enabled, simulating moves will not hide cards that the bots
should have no knowledge about (see next section).

4.5.2 Limited Game State

FullGameState presents a problem. Since it contains so much information, it also
contains things that should not be available for a traditional player, or a bot, to
see, like the order of upcoming cards in draw pile and tavern. That is why
LimitedGameState object is introduced. It is designed to be provided to bots so
that they only have information available for players in the original game. In this
object, sensitive information such as order of cards in draw pile and tavern is is
not displayed. Instead, all cards in these piles are sorted lexicographically, so that
bots know which cards can be drawn, but have no information about which specific

4.5. GAME STATE REPRESENTATION 25

card will be drawn, which is consistent with the base game. Similarly, enemy player
is also modified, since player should not be able to see the hand of his opponent.
Instead, draw pile and hand are combined to a single list, so that the bot cannot
see which cards exactly the enemy has, but he knows which he might have. Some
fields, such as InitialSeed and CurrentSeed are also hidden, since they could
be used to abuse seeded simulations, which are explained in the next subsection.
Internally, this class holds the FullGameState object, and just exposes some of its
fields - directly or altered as explained above.

4.5.3 Simulating Moves

The engine exposes the ability to simulate moves given a FullBoardState. This
can be done in two ways: a ScriptsOfTributeAPI object can be created from the
FullBoardState and used freely, or, alternatively, the FullBoardState.ApplyState(Move)
function can be used, that takes a Move as a paremeter and returns FullBoardState
that is the result of applying this move, and a list of possible moves that can be
applied to that new state.

Bots can use LimitedGameState.ApplyMove function, that internally calls the
equivalent function in FullGameState, and converts its results back to LimitedGameState.
However, this poses some challenges.

Usually, bots should not be allowed to see into the future, that is, see what cards
they will draw next, or what cards will next appear in the tavern. But what if a bot
decides to simulate buying something from the tavern? The anser is: he will receive
a new game state object with that card in the tavern bought and already replaced
by the next card in the tavern cards queue. This way, the bot could outsmart the
system and be able to reverse engineer part of the tavern or, similarly, part of his
draw pile.

In order to solve this problem, we decided to introduce an Unknown card. If
a bot simulates a move that would give him a knowledge that he should not have,
like drawing a card, the card will be replaced with an Unknown card. This is a card
of unknown type, with unknown effects, and such it cannot be played, or bought
in a tavern. That way, the bot can still simulate problematic moves, but he cannot
gain any additional information from them. That is also why Cheats fields exists
on the FullGameState object – if it is set to true, then cards are not replaced with
Unknown card.

Because of this limited information policy, the bot also cannot do anything
after ending the turn, because he would need to simulate playing as the enemy,
which would require information like contents of his hand, which should not be
available.

26 CHAPTER 4. ENGINE IMPLEMENTATION

4.5.4 Seeded Game State

The limitations when simulating moves are useful for ensuring that the rules and
information available to bots are consistent with the base game, however, they also
prevent bots from utilising some useful techniques which would require full knowl-
edge of all cards in hand, or the ability to play as the enemy player. This is why we
decided to introduce way of simulating games for bots. They can use an overloaded
version of the ApplyState function, that also accepts a seed. This function shuffles
the tavern and draw pile according to the seed provided, and then applies the
move as normal. Since the card order is no longer the same as in the „real” game
currently being played (well, there is an unlikely chance that the order is the same,
but the bot cannot know this anyway), there is no reason to hide the cards anymore.
This function also returns an object of type SeededGameState that can be used to
continue simulating more moves for the game state originating from the given seed.
This way, the bot can play drawn cards and even play as the enemy.

This feature is also the reason why LimitedGameState cannot have information
about current or initial seed. If it did, the bot could use the current seed to simulate
the game from current state (thus, simulating the exactly same game with exact
same card order). Even if the bot only had the initial seed, he could try to reverse-
engineer the current seed based on the amount of cards drawn so far. This is why
that information is hidden from the bot until the game ends.

SeededGameState works similarly to LimitedGameState - internally, it holds
FullGameState, uses it to simulate moves and exposes some of its fields, though it
does not sort the card lexicographically – it can expose the exact order, since this
is not the real game anyway.

4.6 API

This class can be constructed with an array of Patrons that should be used for
the game and, optionally, with a seed to make the card shuffling deterministic. It
contains functions for all actions that can be performed in the game. The interface
is as follows:

1 public interface IScriptsOfTributeApi

2 {

3 int TurnCount { get; }

4 int TurnMoveCount { get; }

5 BoardState BoardState { get; }

6 SerializedChoice? PendingChoice { get; }

7 Logger Logger { get; }

8 EndGameState? MakeChoice(List <UniqueCard > choices);

9 EndGameState? MakeChoice(UniqueEffect choice);

10 EndGameState? ActivateAgent(UniqueCard agent);

11 EndGameState? AttackAgent(UniqueCard agent);

4.7. CARDS AND EFFECTS 27

12 EndGameState? PatronActivation(PatronId patronId);

13 EndGameState? BuyCard(UniqueCard card);

14 EndGameState? PlayCard(UniqueCard card);

15 EndGameState? EndTurn ();

16 List <Move > GetListOfPossibleMoves ();

17 FullGameState GetGameState ();

18 bool IsMoveLegal(Move playerMove);

19 }

Most functions, such as PlayCard or AttackAgent return an object of type
EndGameState?. In case the function is called with incorrect input (presumably:
the player currently playing made a mistake, like trying to play a card he does not
have in hand) current player loses the game and this object represents that. Usually,
this object is null - this indicates that everything completed successfully.

GetGameState is a crucial function. It returns an object that contains all in-
formation required to restart the game from a given point, including: draw piles,
cooldown piles, played piles and hands of both players, cards currently available in
the tavern, currently pending choice, and more. This object is the basis of the state
object provided for bots, but that one is a cut down version of this - for example,
bots should not have information about upcoming draws, so draw piles for them
are sorted lexicographically. FullGameState also allows the ScriptsOfTributeAPI
object to be recreated from it, which allows starting games from a provided state.

The API object was crucial in implementing multiple ways for users to interact
with the engine. The logic for calling AI to make moves or select Patrons could not
be reused between Unity and the GameRunner, so the API was created so that game
rules can be implemented in one place and reused.

4.7 Cards and Effects

The cards are stored in a JSON format, as a list of objects. This JSON was created
based on Unofficial Elder Scrolls Pages [18] - a website that contains a lot of unof-
ficial information abot ”The Elder Scrolls” game series, including a section about
Tales of Tribute. An example object looks like this:

1 {

2 "id":5,

3 "Name":"Hlaalu Kinsman",

4 "Deck":"Hlaalu",

5 "Cost":10,

6 "Type":"Agent",

7 "HP":1,

8 "Activation":"Acquire 9",

9 "Combo 2":"Remove 1",

10 "Combo 3":null ,

11 "Combo 4":null ,

28 CHAPTER 4. ENGINE IMPLEMENTATION

12 "Family":5,

13 "Copies":2,

14 "PostUpgradeCopies":1

15 }

The objects contain some trivial information about the card, like its ID, name,
the deck it belongs to, or the cost. However, some fields are more interesting.

Activation and Combo{2,3,4} fields contain information about what effects
this card can induce. The effects are parsed to an Effect class that contains
information about its type and „amount”. Since all effects contain a number (that
can represent different things like amount of cards drawn or maximum cost) it is
very elegant and easy to parse. For example: Acquire 9 gets parsed to an effect of
type EffectType.ACQUIRE with Amount field set to 9. The effect executor can then
look at this information and knows that he should present the player a choice with
all cards with cost up to 9, so he can acquire one of them. Cards can sometimes
also have multiple effects, or the ability to choose one of two effects - in that case,
we insert OR or AND between the effects. For example: Acquire 9 OR Coin 8.
Addition of new effect keywords is also easy: we only need to define an enum, and
implement the logic in the effect executor.

The Family field is used for cards that have upgraded versions. Family is the
ID of the base card – the upgraded card also contains this field. Base cards also
have a PostUpgradeCopies field. Since upgrades replace a set amount of base cards
(usually two of four, or one of two) we need this information to know how many of
pre-upgrade cards should be left in the deck. We chose to always include upgraded
cards, even though they are something that need to be unlocked in the base game,
since they are always strictly better, however introducing an ability to configure this
behavior in the future is not out of the question.

The implementation of card definitions as a JSON file has many advantages. For
example, players can easily introduce their own cards, or modify existing cards. This
also makes it easy for us to make small adjustements to cards as balance patches to
ToT are released, and even more: in the future, we plan to give users the ability to
choose on which version of balance patch of ToT they want to use in the engine, so
that older bots that have no knowledge of newer cards can still play against each
other.

4.7.1 Card’s Common ID

Each card from Tales of Tribute that is implemented in our engine has its own
ID. These IDs are stored in an enum. For example: the card ”Hlaalu Kinsman” can
be referred to as CardId.HLAALU_KINSMAN. Thanks to this, in order to create a card,
we do not need to do anything like parsing a string with the card’s name, since we
have enums for each card, which makes for much more readable and less error-prone

4.8. PATRONS 29

code. However, there is a caveat: since there are so many cards, manually creating
the enum with IDs would be tedious and it would be easy to make mistakes, so we
created a Python script that can be run to generate the enum based on the JSON
file with cards.

4.7.2 Unique Cards and Unique Effects

The Card and Effect objects introduced above are really just blueprints for real
cards and effects. Since there can be multiple copies of the same card in the game,
we need a way to differentiate between them - especially since these copies could be
in different places (one in tavern, the other one in hand) - so we cannot refer to
them just by their common ID. Similarly, there are some effects that need to know
the card they belong to (like the Heal effect).

To solve this, we introduced UniqueCard and UniqueEffect classes. Objects
of this type are created from their blueprints, and contain all the same information
except for one addition: unique cards contain a field with a UniqueId, which is
different for each card. In case of unique effects, they also contain this field, but the
unique ID is the same as their parent card’s.

All card blueprints are stored in a singleton called GlobalCardDatabase. This
object can be used to obtain unique cards based on a card ID provided. This object
is not useful for bots though - it always generates a new unique copy of a requested
card, so it will always generate a card that does not exist in the game, so if a bot
tries to play it, he will lose.

4.8 Patrons

Patrons often have more complicated activation conditions and effects, so they are
not defined in a JSON file but as separate classes extending abstract class Patron.
Currently, eight Patrons are implemented, so all with the exception of the newest
one (The Druid King), added after we had already started working on the engine.

Adding a new Patron is not difficult, but more complex than adding new effects,
and it can depend on the complexity of the Patron’s powers. Following functions
need to be implemented:

• GetStarterCards – each Patron provides a card that gets added to each
player’s decks at the beginning of the game.

• PatronActivation – the most important function, this is the main effect of
the Patron, so what happens when user decides to interact with it.

• PatronPower – some Patrons have effects that are executed every turn – they
can be implemented here.

30 CHAPTER 4. ENGINE IMPLEMENTATION

• CanPatronBeActivated – checks if the player has resources required to acti-
vate the Patron.

When creating the API object, four patrons need to be provided that the game
should use. Treasury is an exception – this Patron is always present in every
game. When using the in-engine game runner, it automatically calls bots to choose
Patrons.

4.9 Running Games Directly With Engine

We provide two convenient tools to allow users to run games with their bots -
CLIGameRunner and ScriptsOfTributeUI. However, what if the user just wants to
include the engine in his project, create bots, and run them in the Main function?

ScriptsOfTribute is a class that allows the user to conveniently do just that.
It can be created with two bots (that is, two objects extending the AI abstract
class), and then the Play function can be used to run a single game. The class also
exposes public fields, such as Seed, that can be used for configuration. This object
is used internally by CLIGameRunner, so it contains all the same functionality that
the application does.

Additionally, for convenience, GameEndStatsCounter is also exposed for the
user. It is a utility class that can collect information (in the form of GameEndState
objects) from multiple played games, compile them into useful fields with statistics,
and also provide an elegant way to convert these statistics to a single string that
can later be printed. This class is also used internally by the CLIGameRunner.

4.10 CLI Game Runner

CLI Game Runner (where CLI stands for Command Line Interface) is a command
line application that allows the user to load bots from DLLs and run games between
them.

4.10.1 Usage

In order to be able to use this tool, the user needs to provide a DLL with bots that
he wants to use. To create this DLL, the user should create a library project,
implement the bots there, and then just compile it. The DLL will be available in
the build output directory.

The DLL with bots should be moved to the same directory as the CLI Game Runner
executable. Upon launch, the application will scan the folder, find all valid DLLs,

4.10. CLI GAME RUNNER 31

and the extract all bots from them. The runner requires only two arguments - names
of the first and second bot. For example: GameRunner Bot1 Bot2. This will launch
a single game between the two bots (Bot1 goes first in this case), report the seed
used for the game and the result. If the bots were not found in the DLLs, an error
will be shown.

The game runner supports several options:

• --runs <numberOfRuns> – this option specifies how many games should be
played between the two bots. In case this number is greater than one, the
seed reported in results will be the seed generated for the first game. Each
subsequent game is played with this seed incremented by one. For example, if
the user specified --runs 3 option and the seed 123 was reported, that means
that the games were played with seeds {123, 124, 125}.

• -n – short syntax for --runs.

• --seed <seed> – specifies what seed to use to play the games. If this option
is created, no seed will be generated, instead, this one will be used. In case
--runs option is greater than one, each subsequent game will be played with
the seed incremented by one.

• -s – short syntax for --seed.

• --threads <threadAmount> – number of threads to use to run the games.
When using this option, if <threadAmount> is greater than logical CPU core
count, a warning will be shown. Using this option does not change the be-
haviour of reporting or using seed. Logging to stdout is not available in this
mode.

• -t – short syntax for --threads.

• --enable-logs <p1|p2|both|none> – controls whether logs should be enable.
Depending on the option chosen, this allows for the ability to enable the log for
one of the players, for both, or to disable them completely. Logs are disabled
by default.

• -l – short syntax for --enable-logs.

• --log-destination <destination> - -if this option is set, logs will be saved
to files and saved in destination directory, instead of sent to stdout. This
option must be used to support logging in multiple threads. All logs will be
saved to files with names conforming to the blueprint: <seed>_p1.log, where
seed is the seed that was used in that game, and p1 signifies which player
generated these logs (it can also be p2 in case of the second bot).

• -d – short syntax for --log-destination.

32 CHAPTER 4. ENGINE IMPLEMENTATION

4.10.2 Examples

• Run a single game between two bots.

Command:

1 GameRunner RandomBot RandomBot

Output:

1 Running 1 games - RandomBot vs RandomBot

2

3 Initial seed used: 408779109572556930

4 Total time taken: 145ms

5 Average time per game: 145ms

6

7 Stats from the games played:

8 Final amount of draws: 0/1 (0%)

9 Final amount of P1 wins: 1/1 (100%)

10 Final amount of P2 wins: 0/1 (0%)

11 Ends due to Prestige >40: 0/1 (0%)

12 Ends due to Prestige >80: 0/1 (0%)

13 Ends due to Patron Favor: 1/1 (100%)

14 Ends due to Turn Limit: 0/1 (0%)

15 Ends due to other factors: 0/1 (0%)

• Run 1000 games in two threads.

Command:

1 GameRunner RandomBot RandomBot -n 1000 -t 2

Output:

1 Playing 500 games in thread #0

2 Playing 500 games in thread #1

3 Thread #0 finished. Total: 3124ms, average: 6.248 ms.

4 Thread #1 finished. Total: 3168ms, average: 6.336 ms.

5

6 Initial seed used: 8101434962557867673

7 Total time taken: 3425ms

8

9 Stats from the games played:

10 Final amount of draws: 1/1000 (0.1%)

11 Final amount of P1 wins: 502/1000 (50.2%)

12 Final amount of P2 wins: 497/1000 (49.7%)

13 Ends due to Prestige >40: 956/1000 (95.6%)

14 Ends due to Prestige >80: 0/1000 (0%)

15 Ends due to Patron Favor: 43/1000 (4.3%)

16 Ends due to Turn Limit: 1/1000 (0.1%)

17 Ends due to other factors: 0/1000 (0%)

4.11. OTHER FEATURES 33

• Run 200 games with 12345 seed, and output logs from the first bot to logs
directory.

1 GameRunner RandomBot RandomBot -n 200 -s 12345 -l p1 -d

logs

4.11 Other Features

4.11.1 Deterministic Games

The API can be created with a seed, which makes the games completely determin-
istic, as long as the bots are deterministic. Tales of Tribute does not have much
randomness – in reality, RNG is only used when shuffling the tavern at the begin-
ning of the game, or when shuffling new cards into the player’s drawpile. Simulating
moves is also deterministic – the bot can either provide his own seed for the simula-
tion, or current seed will be used, but in that case – the cards will be hidden. Since
randomness is not of critical importance in the game (that is: we do not need a
cryptographically safe random function), we can get away with using a simple RNG
function. Thanks to that, we only neeed to remember two numbers when keeping
state - current seed, used for generating the next number, and the initial seed.

Even random bots can be deterministic, because they are provided with a seed
based on the current game seed. If they use this seed for all their random decisions,
then games can be 100% deterministic. However, the seed provided to bots is not
the same as the game seed, in fact it is hidden until the end of the game. The
reason for that is that we allow bots to simulate moves with their own seed, and
these simulations do not conceal any cards – so, if the bots had access to the initial
seed, they could try to reverse-engineer the current seed and simulate some moves,
which could give them knowledge that they should not have. To prevent this, the
initial seed is hashed using SHA256, and the first 64 bits of the hash are used as the
new seed provided for the bots.

4.11.2 Logging

The engine provides a Logger. The logs produced by the logger contain the name of
the player, a timestamp when the log was created, and also current turn and move
number within that turn. It can be configured to enable or disable logs for one of the
players, or for both. Additionally, the logger accepts an object of type TextWriter
for each player. This object is an object from C# standard library. It represents a
text stream that can be written to. This makes the logger highly configurable - a
TextWriter can easily be created to point to standard output, or to a file – which
is probably what most of the users want – but there are many more possibilities for
more flexibility for the end user.

34 CHAPTER 4. ENGINE IMPLEMENTATION

4.12 Testing

We use Xunit [15] as the framework for tests. We chose this framework, because
it is modern, simple to use and covers all of our use cases. The tests are contained
in separate projects in our main solution. In order to create a simple test, the only
thing you need to do is add the [Fact] attribute to a function that performs some
asserts about the code. This framework is also the most popular and recommended
out of all competitors, which made our decision even easier.

4.12.1 Testing with FullGameState

FullGameState was initially created as an object that should represent the game
state with all the information that would be useful to bots to help make them
decisions. However, later on, when we were implementing the move simulation
feature for bots, this object became capable of playing a game that began in a given
state. Then we thought that we could use this object to create convenient module
tests. We added a constructor to the class that allows to set all the fields such as
the players’ hands, or the tavern to the desired values.

That way, whenever we encounter a bug in the engine, we can recreate FullGameState
object with simplified state of the game that was causing the problem. For example:
if a specific combination of cards played in a specific order caused a problem, we
could recreate the state with just these cards in a player’s hand. Then we could
simulate the problematic moves and debug the issue in a controlled environment,
with the smallest game state possible, to reduce complexity when diagnosing. When
the bug gets fixed, the test can stay to ensure that it does not happen again. Thanks
to this invention, we can make sure each bug fix is associated with a corresponding
module test. This gives the engine more stability and greatly reduces the chance of
accidentally breaking some complex behaviour when making changes.

4.12.2 Testing with Bots

Simple bots, such as the bot that always makes a random move or always performs
all possible actions before ending its turn, can be useful not only for demonstrating
the engine, but also for testing. As a part of our testing, we run hundreds of games
between these bots and catch any games that end due to internal engine failure.
Since these bots always choose a move from the list of possible moves and never
generate any on their own, the game ending due to incorrect move being made also
means that there is an engine problem.

This is a great way of testing, because just the sheer amount of moves the bots
can make in a single second makes it very likely to encounter a bug, if it exists. The
bots can make some obscure moves that a human player would likely never perform,

4.12. TESTING 35

such as discarding their decks and all cards in the tavern, which can also lead to
edge cases and hidden problems. However, this approach is limited in what types of
issues it can find. If there is a bug in the algorithm for generating the list of possible
moves that adds some moves that are not legal, we are almost guaranteed to catch it:
at some point the bot will try to do something he should not be able to, like trying
to play a card he does not have, so the game will end due to incorrect move. On
the other hand, if the bug is a subtle difference in behaviour – for example, combos
not triggering properly – it can not be caught this way.

Chapter 5

Bot interface

5.1 Game Management

Bot-versus-bot gameplay is controlled in the ScriptsOfTribute.AI namespace. The
entire game setup starts in the ScriptsOfTribute class, to which we pass instances
of bots. User is able to set the seed of the game and the output for logs in this class
(by default it is the standard output, but the user can set the output to file). User
can also define the time within which a bot has to execute its turn, by default we
set this value to thirty seconds. The turn limit is an additional form of protection
against endless games. In the case of random bots or bots that are not trying to win,
we have set a turn limit so that games can end and the user receives information
that the bots playing were unable to complete the game – a special enumeration
type is used for this. This limit should be set high enough to ensure that we only
interrupt the game if the bots truly do not want to win. The default turn limit is
500, after which the game is considered a draw.

After successful configuration, including the selection of patrons, the gameplay
moves to the ScriptsOfTributeGame class, in which methods that return moves are
called on objects representing bots. This class uses the ScriptsOfTributeAPI to
control gameplay.

5.2 Bot Implementation

To implement your bot playing Tales of Tribute on ScriptsOfTribute, you need to
write a C# class that inherits from the abstract AI class from the ScriptsOfTribute.AI
namespace. In the AI class there are three methods that should be overwritten:

• SelectPatron: This method is called during the game exactly two times at
the stage of selecting Patrons. The first argument it receives is the list of
Patrons available for selection, that is, Patrons selected earlier and Treasury,

37

38 CHAPTER 5. BOT INTERFACE

which is a neutral deck and is always in the game, are not included. A second
argument is a number that specifies which choice in turn is the current function
call. The method returns the ID of the Patron the bot wants to select.

• Play: It receives a GameState and a list of possible moves, that is, all legal
moves that can be made. This method returns an object of type Move.

• GameEnd: This method is called after the game has ended. The purpose
of this function is to allow the programmer to analyze the data from the
EndGameState object as they wish.

5.3 Tools Available to Bots

5.3.1 Simulations

Many algorithms used to create AI for games use some form of search during which
they perform simulations and choose their next move based on them. To enable such
simulations, the GameState object, which is one of the Play function arguments
arguments, has an ApplyState method to which we can pass a Move object and get
the state of the board after applying this move. This board is independent of the
current board on which the game takes place. We have two possibilities to call such
a method:

• Without seed: Every draw, either from the Draw pile or Tavern, is replaced
with a special card with ID Unknown. This card cannot be played or bought,
because the state of the board after performing an action with this card is
unknown. The reason for this solution is to hide information that the player
should not have access to if he performs simulations in the same seed.

• With seed: Bot sets the seed of ulong type for the simulation. Cards in the
Draw pile and Tavern are shuffled with this seed, with an exception of known
draws from the Draw pile, such knowledge can be gained by using a card with
the effect of Toss or Refresh.

5.3. TOOLS AVAILABLE TO BOTS 39

5.3.2 Seeding

For bots that use randomness, we provide a seed based on the seed of the current
game, and a SeededRandom object, based on this seed. If a bot wants to use ran-
domness, but also stay deterministic, he can use these tools. Playing two games
between two such bots will always give the same results. Game simulations are also
deterministic.

5.3.3 Logs

During the execution of the Play method, the user is able to use our logs system to
debug his code. The class AI has a method Log that accepts text of type string,
which is stored in a variable in the same class of type List<(DateTime, string)>,
where the first item is the real time at which this method was executed and the
second item is the text passed to the method. Then, in the gameplay supervisor
class, after the execution of the Play method is completed, the contents of the list
are written out to the appropriate output and cleaned up to control memory. The
logs contain additional useful information, such as a timestamp of when the log
was created, and current turn and move number, for more convenient reading and
debugging.

5.3.4 Completed Actions

The GameState object contains a List of previous actions performed in this game.
This might be useful if the user would like calculate next draw of the opponent based
on the order of cards previously played.

Chapter 6

ScriptsOfTribute User Interface

As one of the agent-testing tools, we created an application in the Unity frame-
work 1 that allows the user to conveniently play against bots. This application uses
ScriptsOfTributeAPI class from our game engine for all calculations. At the be-
ginning of the game and after each action performed by the user, we make a query
for the new state of the board and then refresh the entire interface based on the
object we received.

The interface was modeled after the original game to ensure intuitiveness for
Tales of Tribute players. However, we opted for the simplicity of graphics to make
the interface clear so that the user can focus on testing their agent. For example, the
cards do not have graphics from the original game, in their place is text describing the
effects of the card. We used the space the original game does not use for functional
things like tools to help debug bots.

6.1 Presentation

The game was created in 2D with a simple card design so that it has all the infor-
mation needed (Fig. 6.1). As this game is designed to test and debug our agent, the
user has full access to theirs and their opponent’s cards. In addition to the visible
cards in the bot’s hand, user can thoroughly check the Draw Pile, CooldownPile and
Played Pile.

1https://unity.com

41

42 CHAPTER 6. SCRIPTSOFTRIBUTE USER INTERFACE

Figure 6.1: The board at the beginning of the game

The choice screens have a simple design. It has a description of what type it
is and an upper and lower limit on the number of cards to select (Fig. 6.1). This
screen can be minimized if the user wants to check the board state before making a
choice.

Figure 6.2: Choice screen triggered by Treasury Patron

6.2. USAGE 43

All Patrons have tooltips describing their abilities, and an arrow (gold-colored
by default) indicating the player it favors, similarly to Tales of Tribute. If a player
in play is unable to activate a given patron, that patron takes on a darker color.

Figure 6.3: Hlaalu is in neutral state and can be activated by current player, Red
Eagle can’t be activated and favors us.

6.2 Usage

6.2.1 Adding Bots

To add our bot to the GUI application to play with it, we must meet two require-
ments:

• Class that represents the bot must inherit from the abstract class „AI” from
the ScriptsOfTribute.AI namespace.

• We must compile our code into the Class Library (DLL file). We put such a file
with the extension .dll into the directory ScriptsOfTribute_Data\StreamingAssets.
This is a special directory from which Unity can conveniently and safely down-
load files. Once this is done, the agent selection screen should show all the
bots contained in the DLL file.

44 CHAPTER 6. SCRIPTSOFTRIBUTE USER INTERFACE

Figure 6.4: List of available bots with additional information.

6.2.2 Game Settings

The application allows the user to set the seed value of the game. In case this field
is left blank, the seed will be selected randomly. However, if user would like to play
again this random game, on the end game screen user can copy the seed and use it
further. Another variable the user can set is the amount of time we grant the agent
to complete his turn. The default value is 30000ms. The variable affecting the game
is which player starts first. The first player gains access to the tavern, To level the
advantage of the first player, the one playing second gets one free Coin. The user
can decide whether or not to allow the agent to start the game first.

6.2. USAGE 45

Figure 6.5: Available settings

6.2.3 Bot Moves

During gameplay, when the current turn belongs to the bot, the user is provided
with two buttons that call the bot’s actions, specifically its Play method. The first
one „AI Play move” calls the Play method of the agent once in another thread.
On successful execution, a brief description of what action the bot performed will
appear under the button and the board will refresh. If the player wants to proceed
all bot moves at once, he can click the „AI Play all moves” button, the program
will call the Play method in a loop until the returned move does not mean the end
of the turn.

Figure 6.6: Buttons and text representing the action performed by the bot

46 CHAPTER 6. SCRIPTSOFTRIBUTE USER INTERFACE

6.3 Analysis Tools

6.3.1 Logs

In order to view the logs that our bot writes out when performing an action, we can
use a special panel that can be launched with the book icon button. This panel is
scrollable, so it can hold any number of logs. If the user would like to clear the list,
he can use the button with the trash can icon.

Figure 6.7: Logs of MaxPrestigeBot – Move object converted to string

6.3.2 Moves History

Another useful tool for analyzing the game is the history of the moves made by both
players. It allows us to fully comprehend the events on the board and to track every
action and its results. To launch this screen, click the parchment icon in the lower
right corner of the application. To close it just click on the background.

6.4. IMPLEMENTATION 47

Figure 6.8: Moves history UI – when hovered over action UI displays cards this
action relates to.

6.4 Implementation

6.4.1 Game Manager

In Unity, the main class that manages all the code is the GameManager class. In
this class there are methods that change what the user sees on the screen and hears,
methods that handle the bot’s moves and the user’s moves. In the Update method
from the MonoBehaviour class, only the capture of keyboard buttons pressed by the
user is implemented. The rest of the code works on the basis of specific actions such
as pressing a button. This makes the application lightweight so we do not have to
worry about the end user’s hardware requirements. After each action, e.g. the user
plays a card from his hand, we call the RefreshBoard method in a Coroutine 2,
which is responsible for refreshing the board. This method updates the cards in
hand, in the Tavern, and on the board in the case of agents, it also checks the status
of patrons.

6.4.2 Communication with Engine

GameManager holds ScriptsOfTributeAPI object to communicate with engine. To
make this publicly accessible this field is set to static. After the „selecting patrons”
phase GameManager object creates a new ScriptsOfTributeAPI object that will
coordinate that current game.

2https://docs.unity3d.com/Manual/Coroutines.html

48 CHAPTER 6. SCRIPTSOFTRIBUTE USER INTERFACE

The most important queries to the API are made when refreshing the board and
making a move. The human-user movement is parsed based on the tags of the object
the user clicked on, e.g. if he clicked on a card from the Tavern it is obvious that the
player wants to buy this card, for this reason such a card has the tag „TavernCard”.
Bot movements, on the other hand, are parsed based on type. The corresponding
subclass of the Move class is parsed and then we execute the corresponding method
from the API.

6.4.3 Handling Bot Objects

Since during the game there is only one AI instance we decided to use the Singleton
pattern to manage bot behaviour. ScriptsOfTributeAI class in Assets\Scripts\AI
contains several fields:

• AI instance which is an instance of the class selected earlier by the user

• Information about timeouts

• Seed

• Move field

This class also contains equivalents of the methods from the AI class from our
ScriptsOfTribute engine: responsible for selecting patron and the one making a
move. However, we cannot just call these methods every time we need the bot to
make a move for two reasons: we have to keep an eye on the time the agent has for
a turn, and calling such a method can take a long time, even a few seconds, so we
cannot let this call stop the Unity engine from running.

The solution to these problems is to run these methods in other threads. The
C# Task [19] class allows to run methods in threads, count the execution time and
will not freeze the user interface, because we can use Coroutine to wait for thread
to finish task. Every frame engine will check if task has finished and move is picked.
If not, the engine will check again in the next frame. If the task has finished, then
we will proceed with the selected move which will be the value of the Move field in
ScriptsOfTributeAI singleton object.

6.5 Building Project

To build our project in Unity, user ought to build project using default settings for
his operating system. Since this project works for .NET 2.1 Standard library files
(DLL) have to be compiled for the same .NET version. Pick the destination directory
and let Unity do the rest. The most important thing is to add cards.json file to the
directory with ScriptsOfTribute.exe file to let engine read and parse cards. This

6.5. BUILDING PROJECT 49

JSON file can be found inside the project in the root folder or in the GameEngine
repository.

Chapter 7

Bot implementation

7.1 Similar Games and Their AI

Designing a bot for playing digital card games is an interesting task. From one
perspective, these games are relatively easy to write an engine because they are
turn-based and similar to board games. But, on the other hand, because of high
randomness, quite big replayable, and a lot of variants in such games, they are
demanding and most of the simple algorithms will give a relatively low performance.
Moreover, even classical algorithms such as MCTS are not easy to write for such
games, and they often need to be changed in some ways to approach this problem.

As Tales Of Tribute is a new game, there is no study research about creating bots
or strategies in this game. On the other hand, Hearthstone has recently become a
testbed for several AI algorithms. Many problems in that game can be an interesting
starting point for AI research. Some of the research mainly focuses on balancing
the game (or even metagame – game outside of the game – some decks are strong
and because of that, they become popular, it’s good to have tactics against them).
Balancing often means how nerf or buff cards to make them more equally good.
This task is usually approached by some variants of evolutionary algorithms or
neural networks [20]. This problem may also be interesting in Tales of Tribute.
The other two areas of Hearthstone research are programming a gameplaying bot
and deckbuilding. In the case of deckbuilding, these works are state-of-the-art [21,
22, 23, 24]. But because the deck-building phase is a separate and independent
phase in Hearthstone (opposite to Tales Of Tribute), we cannot use knowledge from
these papers to create our bots. The third field focuses on creating an agent for
the game. There are two main approaches: one based on structures like tier list,
heuristics, classical algorithms, and human expert rules [25], and the other one try
to use machine learning solution [26, 27, 8, 28].In recent years we can observe that
these two techniques are combined with good results [29].

51

52 CHAPTER 7. BOT IMPLEMENTATION

7.2 Basic Bots

We started the bot implementations with a few simple ideas that we wanted to
compare with each other and choose those that could be useful when it comes to
writing more advanced bots. (All the bots described below select patrons randomly
from the list of available ones.)

7.2.1 Random Bot

Plays actions by uniformly choosing a random one from the pool of available legal
moves. The main problem of this bot is ending the turn prematurely – often the
whole turn is skipped as the first move drawn was the END_TURN.

7.2.2 Random* Bot

The answer to the main problems of the Random bot – plays random moves from the
pool of moves minus END_TURN. Ends his turn only when this pool is empty. In most
cases, playing all the cards from your hand is a safe move. Only in some cases it is
better to end the turn without using all cards (e.g., empty Draw pile, in hand really
good card and card with TOSS). I think this bot corresponds to how NPCs play on
the Novice level in The Elder Scrolls Online.

7.2.3 MaxPrestige Bot

Probably the first strategy that comes to mind is to try to maximize your prestige
(and power, since it has a chance to be converted to prestige at the end of the turn).
This bot, while simulating moves, checks all paths of lenghts up to two, and chooses
the move for which the sum of prestige and power is the greatest. Unless he finds a
move that gives it a win, then the bot chooses that move.

7.2.4 PatronFavors Bot

Most games end with 40+ prestige and it is easy to forget about the other way to
win, which is favoring a player by all four patrons. Usually, this win condition is
hard to achieve during the game. That is why we wanted to try a bot that mainly
focuses on winning by favoring patrons.

In each move, the bot checks whether there is a possible move that activates
the patron, which does not favor him yet – if there is such a move, he selects it.
Otherwise, the bot checks if it has not used up all possible activations in a turn –
in this case, it checks whether it is possible to buy a „Tithe” card, allowing for one
more activation of the patron in a turn. If so, the purchase action is simulated and

7.3. IMPROVING BASIC BOTS 53

the new state of the game is checked for the possibility of another activation of the
patron. When this is possible, the bot buys a card and in the next move, it should
play a patron activation move. If none of the conditions are met, the bot plays a
random action (except END_TURN).

7.2.5 MaxAgent Bot

Agents seem to be relatively strong cards in this game, especially if the opponent has
trouble removing them. You can think of them as additional cards in your hand that
you can play, increasing the likelihood that you will be able to play some combos.
Activation effects are also usually quite good – so why not focus on maximizing the
agents you have in your deck?

This bot is also relatively simple. First, he randomly uses all the PLAY_CARD
or ACTIVATE_AGENT actions – this is how he gets the coins (and other stats) needed
to phase two. In the second phase, he checks whether he can buy any agents. The
bot favors regular agents over contract ones because it will be possible to play them
again. Agents are sorted by their Tier (more information about that in the next
section) and the best one is selected for purchase. If the buy agent action is not
available, random action is played (without END_TURN).

7.3 Improving Basic Bots

In this section, we briefly describe some techniques and algorithms which we used
during the implementation of more advanced bots.

• Choice of patrons
The first choice the bot has to face. Since 50% of the patrons are picked by the
opponent, a good bot should be able to handle any combination of patrons.
While playing Tales of Tribute, we can notice some synergies between the
decks of patrons. One possible technique could be to create general rules for
selecting the next patron. However, it should be remembered that generally
assigned rules serve not only our bot but also the opponent. It is impossible to
create a perfect bot and every bot will have decks on which it performs better
than others.

So we decided to use the apriori algorithm to select patrons. After each played
game that the bot won, it saves a set of patrons to the list, assuming it is
a promising selection of patrons. In the next game, the bot selects the next
patrons based on the apriori algorithm, which allows us to believe that the
final selection will be statistically the best for him.

• Tier card list
A card tier list is a ranking system that helps categorizing cards based on

54 CHAPTER 7. BOT IMPLEMENTATION

their power, versatility, and synergies between them. This handy tool can
help players during the decision-making process, and both beginners and ex-
perienced players use it. A community of players often creates such tiers; a
good example is youtuber Pink Apple1, who created a couple of films where
he made tier lists for some decks from Tales Of Tribute. Over time, when the
game evolves, new decks are added, and some cards are nerfed/buffed, so it
needs to be remembered to update the tier lists so they can still be useful.

Such tier lists can be made by using algorithms as some researchers did for
Hearthstone, but we, in our project, created a static one by ourselves. Our
tier list rank cards from S to D. The list is subjective, but it makes it easier to
choose cards in different situations. Each bot uses the same list (if uses any),
which will give a fair indication, which methods are better.

• Selection of heuristic values
Some of the bots described later use different heuristics. Some of them were
written by us, but in some cases, we used simple evolutionary algorithms to
select and properly scale the values. Bots have SetGenotype and GetGenotype
methods that allow them to set and extract heuristic values. We usually set
the number of generations to 1000 and the size of population to 100. In each
generation, we randomly matched individuals from the population into pairs,
and they played a match in these pairs. By this, we obtained 50 winners in
every generation. These winners became parents who gave 50 children. To get
them, we combined parents in pairs to create two children by randomly giving
them genes from their parents. Each child’s gene could be mutated with a low
probability (mutation ratio is 1%-2%). Then the parents and children were
shuffled and the next generation began.

7.4 Advanced Bots

By analyzing the mechanism of the game, it can be spotted that there are three ways
by which a bot can influence the opponent – by patrons, by tavern (buying cards
which may suit the opponent’s deck), and by agents (knocking out or destroying
opponent’s best ones). There is also discard action, but it is situational and does
not often occur in the game to have the same impact as the three things mentioned
before. The rest is optimizing our deck to beat the threshold of 40 prestige before
the opponent. The way combos work makes it a good idea to play cards in any order
most of the time. All these things make that the most important ascpect of game
for a bot should be getting high-tier cards and maximizing the number of cards
from the patrons’ decks. The rest of bot’s decisions should use these three ways of
influencing the opponent’s gameplan to make his situation more complicated.

1https://www.youtube.com/@PinkAppleYT/featured

https://www.youtube.com/@PinkAppleYT/featured

7.4. ADVANCED BOTS 55

7.4.1 Decision Tree Bot

Makes decisions about move based on the actual board state. Main rules that guide
this bot:

• Playing cards – it plays all the cards, beginning with these which come from
Treasury or Psijic (potential TOSS effect of moving weak cards to cooldown
pile and leaving only good ones – high tier or combo effect). Usually, the bot
will play all the cards and then decide to make other moves.

• Buying cards – bot prioritizes buying cards that make his deck more powerful:
high-tier cards or cards from a patron’s deck that he already has a lot of cards
from, or combining these two things. Bot also has rules to buy cards from the
Treasury deck – they are highly situational, but some of them are good in the
specific moment – for example, knock out two opponent’s agents, get power
at the end of the game, or get additional activations of a patron. When these
conditions are not fulfilled, the bot will buy cards that suit the opponent the
most to thwart his plans.

• Patron activation – bot checks if the opponent is close to getting favors from
all four patrons – in this case, he will try to activate a patron who favors the
enemy player. Also, if the bot is close to winning by patrons, he will try to find
a way to activate additional patrons (if needed). In other cases, he will try to
use patrons rationally, for example: not activating Duke of Crows if he does
not have a relatively large amount of coins, activating Hlaalu on expensive and
not needed anymore cards during end phase of the game, etc.

• Choices – depend on the type of choice – if it is card effect, it will decide if
the effect is bad or good for the bot and selects the minimum amount of bad
cards or maximum amount of good cards (based on tier and other factors).
When it comes to the choice of effect, the bot will try to select an option that
is better for the bot now (for example, does it need more power or gold in this
situation).

7.4.2 Heuristic

Every bot that used simulation was scored based on the heuristic described below.
Each component has its weight which was defined by us or tuned by evolution. The
main things this heuristic looks at:

• amount of power and prestige,

• patrons’ level of favoritism (also a penalty if two or more patrons favor the
opponent).

56 CHAPTER 7. BOT IMPLEMENTATION

Until the bot’s prestige is smaller than 30 – subjective threshold between the middle
game (deck building phase) and end game – heuristic also takes into consideration
the following things:

• tier of bot’s agents on the board,

• penalty for opponent agents on board (increasing by their tier),

• tier of cards in the bot’s deck,

• amount of cards from different patrons – the bigger the number is, the more
likely it is to activate different combos,

• penalty for high-tier cards left in the tavern,

• penalty for leaving in a tavern card that may suit to opponent’s deck.

We don’t use these things after getting 30 prestige because in end game bots need
to focus mainly on ending game criteria - to find win for themselves and prevent
opponent wins opportunities.

7.4.3 Random Simulation Bot

The first bot that uses the ability to simulate the game that the engine provides.
In a given time interval, it simulates random playouts of bot’s turn and after all
simulations selects the best one based on the heuristic score. The selected playout
is remembered, and until something random happens, the bot uses it for the next
move selection. A random event is defined as: drawing a card, a move that requires
some choice, or buying a card (a new card appears in the tavern) – so every event
that changes the situation on board in an unpredictable way.

The idea of this bot is similar to most people’s way of playing in this game.
They try to figure out the best playouts with all information available right now.
In the first implementation, we encountered the same problem as in Random bot –
even though we simulated a significant number of playouts, a large number of them
were relatively short because the END_TURN action was selected too often, which
impacted the bot’s performance. So the final implementation allows to the selection
of END_TURN, when other moves are possible, with only a slight chance (0.1%).

7.4.4 MCTS Bot

This classic AI algorithm needed a few adjustments to work in our case. Every
part of that algorithm: selection, expansion, simulation, and backpropagations, has
to be changed. First, the engine does not allow the simulation of the opponent’s
turn. Even if we could simulate that, the number of possible playouts would be too

7.4. ADVANCED BOTS 57

big and simulating playout could take too much time (especially at the beginning)
to make it worth. That means there is no win/lose situation after the simulation.
Because of that, we decided to simulate only our turn and based on the situation
on board after the playout, gave a heuristic score to this simulation. This score was
normalized to make it more similar to the classic MCTS algorithm and also to make
UCT metric still works.

As we simulate only our turn, we have total control over playout – the opponent
cannot disturb our best possible scenario. For that reason, our bot selects the
maximum between the previous and current value. This promises to select the
subtree with the best situation on board at the end of the turn because it will not
be covered up by not so high values from other nodes in that subtree. The selection
of the best child node is also a little different – a node with the highest score is
chosen, not the one with the largest number of visits. UCT score is also modified –
unlike the original, we do not take the average but the maximum normalized value
of the heuristic in the current node. The biggest advantage of this bot is the fact
that it uses SeededGameState, a powerful feature provided by the engine that allows
simulating moves without Unknown cards. By this and a big number of simulation,
bot based on statistics, can decide for example whether to activate Red Eagle to
draw a card or how high is a chance to buy a card that makes the bot’s deck more
powerful. Based on that argument, in UTC, we should choose mean, not max score,
because there is a chance that we choose a worse path, counting on a rare event on
this path (for example drawing the best card in our deck). However, during tests, it
turned out that the maximum performs better – probably because drawing a card
is not so often action.

7.4.5 Beam Search Bot (with Simulated Annealing)

Another classic algorithm. As the bot simulates only his turn, the tree of all playouts
is not so big. By using a large k (beam width) in that algorithm, it can easily cover
most of the tree. Also, because the problem is relatively small, the bot can do all
computations during every move selection. The way of working is simple – from
a root, bot simulates all possible moves – all paths of length one and based on
board state after that simulation, assign a score to these moves (based on heuristic
described above) and selects best k paths – k new nodes. In every child of that node
recursively, we compute this algorithm until reaching END_TURN action. All that bot
remembers is a list of tuples with possible moves from the root and a heuristic value
to which this move can lead. To avoid getting stuck in the local maximum, the
bot uses simulated annealing to select, with a small probability, paths with lower
heuristic scores.

58 CHAPTER 7. BOT IMPLEMENTATION

7.5 Comparisions and Conclusions

To test our bots, we wrote the ClashBots class, which worked on round-robin series.
The first player in each match was drawn and all combinations of bots playing with
each other was consider as one tournament. We saved the win ratio of each bot
after every tournament to a file (to protect ourselves from possible errors which can
delete all acquired data) and repeated the tournament several hundred times. By
these methods, we created plot 7.1 and the table below 7.1.

Figure 7.1: Mean Win Rate during testing

For the first 200 tournaments, bots chose randomly and then they switch to use
the Apriori algorithm. As we can see, this did not significantly improve the results
of most bots; the exception here is the MaxPrestige bot. The most favorable list of
patrons for this bot turned out to be: Duke of Crows, Red Eagle, Ansei, and Psijic.
While the first three are not surprising, the last one is quite unexpected (mainly
TOSS action in his deck). Also the lack of Pelin in the list is interesting (because
cards in his deck are mainly focused on getting power). The results shown in Figure
7.1 are no surprise. The Beam search is widely used on CodinGames for turn-based
games, with a good score. MCTS, another classic algorithm, also performs good as
well. The fact that the DecisionTree bot also scored high is satisfactory because
it allows us to believe that knowledge of algorithms is not necessary for this game.
This is important because the future contest can target not only programmers but
also regular Tales Of Tribute players. This may also indicate that a large pool of
different techniques can produce similarly good results in this game, so the variety

7.5. COMPARISIONS AND CONCLUSIONS 59

Table 7.1: Win rate of improved bots (after 400 round-robin games)
Win Rate with MaxPrestigeBot BeamSearchBot MCTSBot DecisionTreeBot RandomSimBot

MaxPrestigeBot - 0.7675 0.7325 0.8725 0.6275

BeamSearchBot 0.2325 - 0.4850 0.5650 0.1925

MCTSBot 0.2675 0.5150 - 0.4375 0.1525

DecisionTreeBot 0.1275 0.4350 0.5625 - 0.3175

RandomSimBot 0.3725 0.8075 0.8475 0.6825 0.0

of effective agents can be large. As it was predicted, Random bot performance is
bad due to ending turns before playing all the cards. Focusing only on the thing
does not seem to be beneficial; the exception here is the MaxPrestige bot. Even
though the idea is simple, he performs quite well. The good score of this bot is less
surprising if we look at the winners of the Hearthstone AI Competition in 2020 –
first and second-placed bots used a similar idea of a dynamic lookahead.

Figure 7.2: Win rate BeamSearch bot vs MCTS bot versus k in beam search algo-
rithm

Figure 7.2 shows the win rate of BeamSearch bot against MCTS bot depending
on the selected k. Special attention deserves the difference between the win rate
depending on whether BeamSearch starts the game or is the second player. This is
not unique to this bot only; repeating tests on other bots, win rate is usually a few
percentage points higher if the bot is the first player.

Chapter 8

Conclusions

In this work, we presented the implementation of the game engine from scratch, the
graphical interface in Unity, and developed several bots using the features provided
by the engine. We believe that the current state of our work allows us to conduct
an AI contest based on our tool in the future (e.g., at IEEE Conference on Games).

However, we hope that by then, we will be able to improve some things. The
main goal for the UI is to reduce the amount of text on the cards and represent the
effects of the cards using pictograms. It will also be important to add the mode
which allows to bot vs bot game. It would also be useful to have two modes: with
the bot’s hand cards face down and up. In the future, an interesting feature in the
application would be to create a server where players could share their bots and
other players could play against them. Another less urgent improvement would be
the moves history searchbar. When it comes to the engine, a big advantage would
be the ability to play on predefined decks and logging full game state after every
move.

In the case of bots implementation, we highly count on the future users of
our solution. Our bots currently serve as a solid foundation for creating advanced
agents as well as a practice tool for beginners who want to learn new Tales of Tribute
strategies. However, we can already point out some things that can be considered
in the bot projects – for example in bots that useses simulation it is often to have
duplicate cards in hand – bot can effectively reduce the search tree by ignoring
playing a duplicate as a unique action.

61

Bibliography

[1] Eric Yang and Yu-Chi Kuo. An AI for Dominion using Deep Reinforcement
Learning.

[2] Jon Vegard Jansen and Robin Tollisen. An AI for dominion based on Monte-
Carlo methods. Master’s thesis, University of Agder, 2014.

[3] Tobias Mahlmann, Julian Togelius, and Georgios N Yannakakis. Evolving card
sets towards balancing dominion. In 2012 IEEE Congress on Evolutionary
Computation, pages 1–8. IEEE, 2012.

[4] Mok Ming Foong. Creating a Dominion AI Using Genetic Algorithms. 2016.

[5] Alexander Dockhorn and Sanaz Mostaghim. Introducing the Hearthstone-AI
Competition. pages 1–4, may 2019.

[6] Pablo Garćıa-Sánchez, Alberto Tonda, Antonio J Fernández-Leiva, and Car-
los Cotta. Optimizing hearthstone agents using an evolutionary algorithm.
Knowledge-Based Systems, 188:105032, 2020.

[7] Maciej Świechowski, Tomasz Tajmajer, and Andrzej Janusz. Improving Hearth-
stone AI by Combining MCTS and Supervised Learning Algorithms. In 2018
IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8,
2018.

[8] Łukasz Grad. Helping AI to play Hearthstone using neural networks. In 2017
federated conference on computer science and information systems (FedCSIS),
pages 131–134. IEEE, 2017.

[9] Alexander Dockhorn and Sanaz Mostaghim. Introducing the Hearthstone-AI
Competition. CoRR, abs/1906.04238, 2019.

[10] Jakub Kowalski and Radoslaw Miernik. Evolutionary Approach to Collectible
Card Game Arena Deckbuilding using Active Genes. CoRR, abs/2001.01326,
2020.

[11] Ronaldo E Silva Vieira, Anderson Tavares, and Luiz Chaimowicz. Drafting in
Collectible Card Games via Reinforcement Learning. pages 54–61, 11 2020.

63

64 BIBLIOGRAPHY

[12] Ya-Ju Yang, Tsung-Su Yeh, and Tsung-Che Chiang. Deck Building in Col-
lectible Card Games using Genetic Algorithms: A Case Study of Legends of
Code and Magic. pages 01–07, 12 2021.

[13] Ronaldo Vieira, Anderson Tavares, and Luiz Chaimowicz. Drafting in Col-
lectible Card Games via Reinforcement Learning. pages 895–898, 10 2021.

[14] Newtonsoft.Json documentation. https://www.newtonsoft.com/json/help/
html/Introduction.htm.

[15] Xunit documentation. https://xunit.net/#documentation.

[16] System.CommandLine overview. https://learn.microsoft.com/en-us/

dotnet/standard/commandline/.

[17] Solutions and projects explained. https://learn.microsoft.com/en-us/
visualstudio/ide/solutions-and-projects-in-visual-studio?view=

vs-2022.

[18] Unofficial Elder Scrolls Pages – Tales Of Tribute. https://en.uesp.net/wiki/
Online:Tales_of_Tribute.

[19] Task class. https://learn.microsoft.com/pl-pl/dotnet/api/system.

threading.tasks.task?view=netstandard-2.1.

[20] Fernando De Mesentier Silva, Rodrigo Canaan, Matthew Fontaine, Julian To-
gelius, and Amy Hoover. Evolving the Hearthstone Meta. 08 2019.

[21] Sverre Johann Bjørke and Knut Aron Fludal. Deckbuilding in Magic: The
Gathering Using a Genetic Algorithm. Master’s thesis, NTNU, 2017.

[22] Aditya Bhatt, Scott Lee, Fernando de Mesentier Silva, Connor W Watson,
Julian Togelius, and Amy K Hoover. Exploring the Hearthstone deck space. In
Proceedings of the 13th International Conference on the Foundations of Digital
Games, pages 1–10, 2018.

[23] Aditya Bhatt, Fernando De Mesentier Silva, Connor Watson, Julian Togelius,
and Amy Hoover. Exploring the hearthstone deck space. pages 1–10, 08 2018.

[24] Andreas Stiegler, Claudius Messerschmidt, Johannes Maucher, and Keshav Da-
hal. Hearthstone deck-construction with a utility system. pages 21–28, 01 2016.

[25] Andre Santos. Monte Carlo Tree Search experiments in Hearthstone. PhD
thesis, 06 2017.

[26] Alysson Silva and Fabŕıcio Góes. HearthBot: An Autonomous Agent Based on
Fuzzy ART Adaptive Neural Networks for the Digital Collectible Card Game
HearthStone. IEEE Transactions on Computational Intelligence and AI in
Games, PP:1–1, 08 2017.

https://www.newtonsoft.com/json/help/html/Introduction.htm
https://www.newtonsoft.com/json/help/html/Introduction.htm
https://xunit.net/#documentation
https://learn.microsoft.com/en-us/dotnet/standard/commandline/
https://learn.microsoft.com/en-us/dotnet/standard/commandline/
https://learn.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio?view=vs-2022
https://en.uesp.net/wiki/Online:Tales_of_Tribute
https://en.uesp.net/wiki/Online:Tales_of_Tribute
https://learn.microsoft.com/pl-pl/dotnet/api/system.threading.tasks.task?view=netstandard-2.1
https://learn.microsoft.com/pl-pl/dotnet/api/system.threading.tasks.task?view=netstandard-2.1

BIBLIOGRAPHY 65

[27] Pablo Garćıa-Sánchez, Alberto Tonda, Antonio Fernández-Leiva, and Car-
los Cotta. Optimizing Hearthstone agents using an evolutionary algorithm.
Knowledge-Based Systems, 188:105032, 09 2019.

[28] Elie Bursztein. I am a legend: Hacking Hearthstone using statistical learning
methods. In CIG, pages 1–8, 2016.

[29] Maciej Świechowski, Tomasz Tajmajer, and Andrzej Janusz. Improving Hearth-
stone AI by Combining MCTS and Supervised Learning Algorithms. pages 1–8,
08 2018.

	Introduction
	AI Programming Competitions
	Collectible Card Games
	Dominion
	Hearthstone
	Legends of Code and Magic

	Tales of Tribute
	Overview of the Game rules
	Tavern
	Cards
	Patrons
	Win Conditions

	Engine Implementation
	Technology
	Project Structure
	Engine Structure

	Overview of Important Objects
	Combos and Choices
	Game State Representation
	Full Game State
	Limited Game State
	Simulating Moves
	Seeded Game State

	API
	Cards and Effects
	Card's Common ID
	Unique Cards and Unique Effects

	Patrons
	Running Games Directly With Engine
	CLI Game Runner
	Usage
	Examples

	Other Features
	Deterministic Games
	Logging

	Testing
	Testing with FullGameState
	Testing with Bots

	Bot interface
	Game Management
	Bot Implementation
	Tools Available to Bots
	Simulations
	Seeding
	Logs
	Completed Actions

	ScriptsOfTribute User Interface
	Presentation
	Usage
	Adding Bots
	Game Settings
	Bot Moves

	Analysis Tools
	Logs
	Moves History

	Implementation
	Game Manager
	Communication with Engine
	Handling Bot Objects

	Building Project

	Bot implementation
	Similar Games and Their AI
	Basic Bots
	Random Bot
	Random* Bot
	MaxPrestige Bot
	PatronFavors Bot
	MaxAgent Bot

	Improving Basic Bots
	Advanced Bots
	Decision Tree Bot
	Heuristic
	Random Simulation Bot
	MCTS Bot
	Beam Search Bot (with Simulated Annealing)

	Comparisions and Conclusions

	Conclusions
	Bibliography

