
Developing New Track for Strategy Card

Game AI Competition: Constructed Mode

(Opracowanie nowego trybu do zawodów

Strategy Card Game AI: Constructed Mode)

Krzysztof Bednarek

Praca magisterska

Promotor: dr. Jakub Kowalski

Uniwersytet Wrocławski

Wydział Matematyki i Informatyki

Instytut Informatyki

March 7, 2024

Abstract

Collectible Card Games present intriguing opportunities for ArtiĄcial Intelligence

research, but their human versions pose challenges as platforms for researchers due

to their complexity. Consequently, the initial iteration of Legends of Code and Magic

was developed. In this paper, I aim to present the modiĄcations implemented in

version 1.5 to enhance the environment for research purposes.

Kolekcjonerskie Gry Karciane sź interesujźcź bazź dla badań nad Sztucznź

Inteligencjź. Niestety, ich wersje stworzone dla ludzi sź niewygodne w użyciu w

celach badawczych. Pierwsza wersja Legends of Code and Magic została stworzona

w celu wypełnienia tej luki. W poniższej pracy opiszę zmiany wprowadzone w wersji

1.5 w celu lepszego dostosowania jej jako środowiska do badań.

Contents

1 Introduction 7

1.1 Collectible Card Game . 7

1.2 Popular CCGs . 7

1.3 Why it is interesting for ArtiĄcial Intelligence research 9

1.4 CodinGame . 10

1.4.1 Framework . 11

1.4.2 Technical limitation . 11

2 Legends of Code and Magic 13

2.1 History . 13

2.2 Research . 14

2.3 Rules . 15

2.3.1 Cards . 16

2.3.2 Mana . 18

2.3.3 Runes . 18

2.3.4 Draft Phase . 19

2.3.5 Battle Phase . 20

2.4 Communication . 20

3 Changes 21

3.1 Problems . 21

3.2 Constructed Mode . 22

3.3 Area . 23

5

6 CONTENTS

3.4 Runes . 26

4 Generation 27

4.1 Card Generation . 27

4.2 Example of Generation . 28

4.3 Generation ConĄguration . 31

4.4 Card Images . 31

5 Summary 35

Bibliography 37

Chapter 1

Introduction

1.1 Collectible Card Game

A Collectible Card Game (CCG) is a genre of games built around the idea of col-

lecting cards and using them to battle other players. Most of them revolve around

three basic ideas.

First, players acquire packs of cards, typically containing 5–16 cards per pack,

to build up their card collection..

Second, players can use cards from their collection to build up decks. The size

of such a deck has to be between set boundaries. For example, the Hearthstone deck

has to comprise exactly 30 cards, while in Magic: The Gathering in Standard, you

are required to have at least 60 cards in your deck. And while in the online version

deck size is limited to 250 cards, in the tabletop the only limit is the player’s ability

to shuĘe their deck without assistance.

And last but not least, players can use those decks to battle against each other.

Typically, players take turns using cards from their decks to lower the opponent’s

Health Points with the Ąnal goal of reducing the opponent’s health to 0.

1.2 Popular CCGs

There are several popular CCGs. First, what is considered by many the Ąrst real

CCG is Magic: The Gathering. It was initially released in 1993 by Wizards of the

Coast as a tabletop game, and later in digital — Ąrst as Magic: The Gathering

Online in 2002 and second as Magic: The Gathering Arena in 2019. Originally, it

was inĆuenced by Dungeon and Dragons, but now it developed its own world and

lore. In 2018, it hit 35 million players around the world in 70 different countries.

And only between 2008 and 2016, it printed over 20 billion cards.

7

8 CHAPTER 1. INTRODUCTION

Next is Hearthstone, developed by Blizzard Entertainment and published in

2014 as a digital-only game. All graphics and characters are based on their earlier

game, World of Warcraft. In the year 2020 alone, it boasted an active player base

exceeding 23 million individuals.

Figure 1.1: Hearthstone statistics for 2020 Source: https://hearthstone.blizzard.com/en-us/news/23625669/
year-of-the-phoenix-in-review

Another popular CCG is the tabletop game Yu-Gi-Oh! Trading Card Game,

published in 1999 by Konami. It is based on the game Duel Monsters presented

in the manga Yu-Gi-Oh! created by Kazuki Takahashi. Moreover, there are over

50 video games based on the same Duel Monsters game, both multi- and single-

player. Currently, the most popular online one is Yu-Gi-Oh! Master Duel. In 2021

https://hearthstone.blizzard.com/en-us/news/23625669/year-of-the-phoenix-in-review
https://hearthstone.blizzard.com/en-us/news/23625669/year-of-the-phoenix-in-review

1.3. WHY IT IS INTERESTING FORARTIFICIAL INTELLIGENCE RESEARCH9

Yu-Gi-Oh! Trading Card Game reached 35 billion cards sold.

CCGs are popular not only among players but among the viewers of streams as

well. As we can see in the graphic below, viewers together watched over 6 million

hours of streams over the span of a single week.

Figure 1.2: Statistics of streams about most popular CCGs during single week Source:
https://gamesight.io/leaderboards/collectible-card-games, state for 09.12.2022

1.3 Why it is interesting for Artificial Intelligence re-

search

A game of the CCG genre is interesting for several reasons.

First, it is highly strategic — a player needs to plan what they will do and

use their cards reasonably. For instance, advisable to strategically reserve some

“removals” (cards intended to eliminate the opponent’s Creatures) for important

targets and not exhaust them on less signiĄcant ones.

Second, it has a big branching factor. In the worst-case scenario, we look at

around 200 possible actions. That is: which of the 10 cards in hand play, each of

them can be a spell with around 10 potential targets, as well as which of the Creatures

on the board should attack which of the opponent’s Creatures. In addition, each

turn comprises several actions, since we can play a few cards, as well as use some

Creatures from the board to attack the opponent, all in the same turn. According

to [7], even in a much simpler situation, with Ąve cards and Ąve targets, we look at

a branching factor of 375000 for the whole turn.

Next, there is quite a lot of hidden information. A player does not know what

his opponent has in his hand or the deck. Moreover, the deck is shuĘed before the

start of the game, so the player does not know the order in which they will receive

https://gamesight.io/leaderboards/collectible-card-games

10 CHAPTER 1. INTRODUCTION

their cards.

Last but not least is non-determinism. The Ąrst part of it is already mentioned

shuĘing of the decks. The second is connected with the special abilities of cards

and highly depends on the game: in some games, almost every card has a random

effect, in others, only a few have such effects.

Altogether, we get a type of game that is the middle ground of difficulty to play

for an AI. It is harder than chess, which has been thoroughly researched (starting

from the DeepBlue [2], through StockĄsh [16], up to Alpha Zero [17]). At the same

time, it is considerably easier than RTS games, in which real success has appeared

only recently [15, 20].

1.4 CodinGame

CodinGame is a platform designed around the concept of facilitating programming

learning in a more engaging and enjoyable manner. It serves as a resource for

learning various programming languages (with over 25 languages available) as well

as different algorithms and algorithmic concepts. This is achieved by encapsulating

diverse programming tasks within different types of games. The platform offers three

main types of games: solo puzzle games, optimization tasks, and multiplayer games.

The inclusion of levels and achievements motivates users to solve more problems,

while rankings foster competition and the pursuit of superior results.

Many games on CodinGame feature animations to visualize program execution,

along with visual debugging information to aid in debugging processes.

Figure 1.3: Interface of CodinGame

1.4. CODINGAME 11

1.4.1 Framework

CodinGame provides a framework on their GitHub repository [5]. This framework

includes several classes to use during implementation:

• GameManager – The main class responsible for managing the game and trans-

mitting information about input and output to the AI players. There are

several subclasses of GameManager, corresponding to the different types of

games

• GameRunner – Enables local execution of the game. It includes an HTML

package for viewing replays in web browsers.

• GraphicEntityModule – Facilitates the implementation of graphical represen-

tations of the game. It can incorporate simple geometric shapes, load graphics

from Ąles, and apply transformations to images.

The entire framework is implemented in Java, with Maven utilized for managing

various packages. Graphics are handled by the JavaScript framework PixieJS, under

the control of the GraphicEntityModule class. Additionally, CodinGame employs

the concept of a stub generator, which, when provided with a simple pseudocode,

can generate an initial bot for the game.

Although the framework documentation [4] may be lacking, the authors provide

a game skeleton [6] and several examples on their GitHub [3].

1.4.2 Technical limitation

Players must communicate using standard streams with the Referee. Each player

has access to one CPU core and 768MB of RAM, without access to GPU. In multi-

player games, up to four players can participate in a single match. All games have

a hard limit of 30 seconds for the entire match duration.

Chapter 2

Legends of Code and Magic

Legends of Code and Magic (LoCM) is a CCG, designed to provide an easy-to-work-

with environment for research into CCG AI. The game “The Elder Scrolls: Legends”

has been used as a starting point while designing the rules.

CCGs frequently feature complex effects that pose challenges during bot cre-

ation and complicate accurate simulation by AI. For instance, certain cards in some

games not only clear the entire board but also Ąll it back with random cards. With

effects like this, any attempt at simulation would be rendered completely futile.

Because of that, effects in LoCM are kept on the simpler side, with no ran-

domness in the battle phase. Only a few complex rules are implemented, such as

splitting the board into two halves (added in version 1.2), runes (removed in 1.5),

cards summoning multiple copies of a Creature (added in version 1.5) and Items

affecting multiple Creatures (added in version 1.5). The rest of the rules and ef-

fects were designed with simplicity in mind. They are discussed in more detail in

Chapter 2.3.

All three versions are available for direct access as contests on CodinGame and

as a repository for download on GitHub. All of the necessary links can be found on

the projects page [10].

2.1 History

Version 1.0 of Legends of Code and Magic was initially introduced in 2018. It

debuted on CodinGame through the Sprint contest, which lasted for 4 hours and

attracted over 700 participants. Following this, it was featured in the Marathon

contest, which spanned 4 weeks and garnered participation from over 2100 contes-

tants. Subsequently, it was made available for future users under the category of

Bot Programming [8].

During the initial Marathon contest, the predominant approach for the draft

13

14 CHAPTER 2. LEGENDS OF CODE AND MAGIC

phase involved the utilization of a predeĄned ordering of cards. Although some par-

ticipants experimented with alternative strategies, simpler static ordering strategies

proved more effective. In the Battle Phase, search-based techniques dominated, with

neural networks being a less popular alternative.

In 2019, version 1.2 [9] was introduced, notable for splitting the game board

into two lanes with no interaction between Creatures on different lanes.

This version was utilized in several contests during the Congress on Evolutionary

Computation (CEC) and the Conference on Games (COG), with prizes sponsored

by the IEEE Computational Intelligence Society. Across Ąve editions of version

1.2, a total of 17 unique submissions were received, with some bots being upgraded

between contests.

Most participants continued to employ static ordering in the Draft Phase, with

only a minority of participants attempting dynamic adjustments to their drafting

strategies based on previously selected cards. In contrast, strategies for the Bat-

tle Phase exhibited greater diversity, with search-based approaches being the most

popular.

The subsequent version, released in 2022, made its debut during COG 2022,

attracting 6 participants. Notably, neural network-based strategies emerged as the

most favored approach, adopted by 4 of the participants.

All this history has been summarized in more detail in [12] written by the

authors of the original version. In it, they review the competitions where LoCM has

been utilized, focusing on the perspective of the organizers.

2.2 Research

Legends of Code and Magic have already been used as the subject of several inter-

esting papers.

First, in the work [18], researchers adopted a Reinforcement Learning paradigm

to the whole game. They developed separate policy networks for draft and battle

phases, training them concurrently via self-play. The resulting agents were assessed

through comparison with state-of-art agents available at the time as well as by

submitting it to the Strategy Card Game AI Competition.

Then, the authors continued this research in [19]. This time, they concentrated

only on the drafting phase. Authors tested three approaches to the history of previ-

ous picks — passing them directly, using LSTM or completely disregarding history.

Again, their agents were tested by competing against each other and bots from

previous competitions as well. What is interesting, in their experiments, the third

approach achieved the best results in all the experiments, followed by the second

one.

2.3. RULES 15

Next, authors of [14] experimented with Online Evolutionary Planning. The

evaluating function was created as a linear combination of the health of the opponent,

the value of the opponent’s and own cards on board, Items in hand, and the number

of cards to be drawn. The weights of those parameters were tuned using the N-Tuple

Bandit Evolutionary algorithm.

On the other hand, authors of [22] decided to use genetic algorithms in their

approach. They chose three different scoring functions and used GA to Ąnd the best

parameters for each of them.

The new version 1.5 was already used in some research. Authors of [21] decided

to use end-to-end policy trained using deep reinforced learning coupled with opti-

mistic smooth Ąctitious play. This approach was quite successful, as their submission

won the contest.

Authors of the original game used it for their research as well. One example

can be [13] in which they experiment with an evolving function for the evaluation of

cards and game state. The studied aspects are different representations of genomes

and categories of opponents to train against.

Another example is [11], where authors test the usage of evolution in the draft

phase. More speciĄcally, their concentration is on active genes and the assessment

of their ideas in terms of the cost of training.

2.3 Rules

Each player starts with 30 Health Points, and their main goal is to reduce the health

of their opponent to 0. They can achieve their goal using cards they draw from their

deck.

Each player has a deck of 30 cards, from which they can draw them to their

hands. One can hold up to 8 cards in hand. Each player has a guaranteed draw

of one card per round, but this number can be increased by runes or playing cards

with cardDraw property.

A player can use some of his cards to summon friendly Creatures on the board.

This board is split into two lines, and Creatures from different lines can not interact

with each other. That means that the Creature can attack the opponent, or Creatures

of the opponent, only if they are in the same lane, as shown in the picture below –

the incorrect target is marked with a red arrow.

16 CHAPTER 2. LEGENDS OF CODE AND MAGIC

Figure 2.1: Possible attack targets

The game consists of two phases: Draft Phase and Battle Phase.

2.3.1 Cards

There are two types of cards: Creatures and Items. Playing any card costs a certain

amount of mana, speciĄc to that card.

Each Creature has two statistics: attack and defense. The attack represents

how much damage that Creature can deal to the opponent or to their cards. Defense

corresponds to the amount of damage that the Creature can withstand.

Figure 2.2: Example Creature card

A Creature can have special abilities called Keywords. There are six of them:

• Breakthrough: When a Creature with this keyword overkills another Creature,

excess damage is dealt to the opponent.

2.3. RULES 17

• Charge: Creatures with Charge can attack in the same round they were sum-

moned.

• Drain: Each time a Creature with Drain attacks, it heals its owner by the

amount of damage dealt to the target.

• Guard : Enemy Creatures on the same lane as this Creature can not deal

damage to the player nor other Creature without Guard. An example can be

seen in the Figure 2.3.

• Lethal : When a Creatures with Lethal deals damage to another one, it in-

stantly kills it.

• Ward : Creatures is completely protected from the next incoming damage.

Figure 2.3: Possible attack targets with Guard

Finally, each card can have properties cardDraw,myHealthChange and opponentHealthChange.

The Ąrst of them allows the player to draw a certain amount of additional cards in

the next turn. The second and third ones respectively give health to the player and

damage the opponent.

18 CHAPTER 2. LEGENDS OF CODE AND MAGIC

Next, we have Items. There are three subtypes of them:

• Green Items: a player can use them on their Creatures on board and increase

their attack and defense, as well as add keywords to them.

• Red Items: they can be used to decrease the attack and defense of opponent

Creatures, as well as remove keywords from them.

• Blue Items: a player can use them to deal damage directly to the opponent or

to enemy Creatures.

Figure 2.4: Example Item cards

2.3.2 Mana

During Battle Phase, a player requires mana to use any card. The Ąrst player starts

with max mana equal to one, while the second one starts with max mana amounting

to two. Then, each round, their max mana is increased by one, up to the max of

twelve. Next, their mana is restored to this new max. The second player starts with

a higher max mana thanks to the one-time bonus mana, which is considered used

after they spend all their mana in a single turn.

2.3.3 Runes

Each player starts a game with Ąve runes. They correspond to 25, 20, 15, 10, and

5 health points. When the player Ąrst time hits those thresholds, they lose their

respective rune. Additionally, their draw for the next turn is increased by one.

Besides that, runes are used to help to solve the stalemates. When a player

does not have any cards left in the deck, then the rune corresponding to the highest

threshold explodes, setting their health points to that amount.

This mechanic comes from the game The Elder Scrolls: Legends. But, in the

original, the additional draft was immediate, and if the drawn card had a keyword

2.3. RULES 19

Prophecy, it could have been played instantly. However, here, it was not possible to

implement it fully because of the technical limitations of the platform. The decision

to play the drawn card would require pausing the current player’s turn and giving

a chance to the other player to make a choice. CodinGame does not have such an

ability. In theory, it could have been done, but would require an overly complicated

workaround and would be confusing for a user.

The absence of this keyword signiĄcantly diminished the inĆuence of this me-

chanic compared to its original form, while it still was increasing complication of the

game.

2.3.4 Draft Phase

During the Draft Phase, players have to build their decks for the game. It consists

of 30 turns, in each of them the game presents two identical sets of three cards to

both competitors. Each player chooses one card from each set, without knowledge

about the content of future sets. Then, each of the players obtains their own copy of

that card. Consequently, they can both take the same card. Those 30 chosen cards

make the decks of the players to use during Battle Phase.

Figure 2.5: Draft Phase

20 CHAPTER 2. LEGENDS OF CODE AND MAGIC

2.3.5 Battle Phase

Through Battle Phase, a player can use three types of actions. The Ąrst of them is

Summon, which puts a Creature represented by the chosen card onto the board. The

second action is Cast, which uses a spell-type card and changes the statistics of a

Creature on the board, deals damage to the opponent, or heals the player. Last but

not least, there is Attack action, which allows a player to use one of their Creatures

to attack one of the opponent’s Creatures or the opponent himself.

The Ąrst two types of actions require a certain amount of mana, speciĄc to the

used card. It is represented as the Cost on the card.

2.4 Communication

Next, we will discuss communication between the main program and players. For

this purpose, we use standard streams. In each turn, the referee sends each player

several lines of information about the state of the game. The Ąrst part of this state

comprises the health of both players, their mana, the number of cards in decks and

to draw in the next turn. It also contains information about all the cards on the

board and in the current player’s hand. Then the player responds with a series of

actions separated by a semicolon.

Each action is described by its type, followed by potentially several numerical

arguments and then by comment, for example "SUMMON 10 1 summoning 10". In

this case, it would be the ID of the chosen card equal to 10, the lane to which it

should be summoned being 1, and the accompanying comment being “summoning

10”.

If a player returns an incorrect action, there are two possible reactions. First,

if the type of action is incorrect or there is an incorrect number of arguments, the

game is ceased, and the other player is declared a winner. Second, if the value in

the argument is incorrect, the player receives only a warning.

Chapter 3

Changes

Version 1.2 of the game performed satisfactorily without major issues. However,

it necessitated a few design alterations to serve as a more effective testbed for re-

searching Collectible Card Games.

3.1 Problems

The primary concern revolved around the Draft phase, which failed to properly

reward players experimenting with more intricate deck-picking strategies. As ev-

idenced by the Post Mortem [1] for Marathon on CodinGame and in statics for

contests during CEC and COG as mentioned in Chapter 2.1, the leading strategy in

the Draft phase involved oĘine ordering of cards. Many participants opted to settle

in advance an order of cards and then during gameplay, select the highest-ranked

card according to this order. While some attempted more dynamic approaches, the

lack of success led them to revert to oĘine ordering. Notably, all contests for version

1.2 were won by bots employing oĘine ordering strategies.

This issue partly stemmed from the absence of complex card effects, resulting

in limited interactions between cards. In most CCGs, various categories of Crea-

ture equivalents exist, with cards speciĄcally interacting with these categories. For

instance, in Hearthstone, the card ”Scavenging Hyena” possesses the effect ”When-

ever a friendly Beast dies, gain +2/+1,” encouraging players to prioritize acquiring

more Beasts and cards that interact with them. As a further example, in The El-

der Scrolls: Legends, the card ”Soul Split” allows players to ”SacriĄce a creature

to summon 3/2 Sundered Shade in each lane,” offering strategic value in utilizing

heavily wounded or weak Creatures.

Regrettably, effects of this nature may not smoothly integrate into a game

primarily designed for AI research in CCGs, prioritizing accessibility and ease of

experimentation.

21

22 CHAPTER 3. CHANGES

(a) Scavenging Hyena card
from Hearthstone Source:
https://playhearthstone.com/en-us/

cards/69962-scavenging-hyena?set=

classic-cards

(b) Soul Split from The
Elder Scrolls: Legends
Source: https://en.uesp.net/

wiki/Legends:Soul_Split

Figure 3.1: Example cards from other games

Unfortunately, simplifying rules in LoCM led to a lack of such intricate inter-

actions. The only incentive to build a more complicated drafting bot was roles of

cards like Tank or Remover as well as mana curve. But, as mentioned earlier, more

complicated drafting approaches worked similarly or even worse than a pre-deĄned

order.

The Ąnal problem relates to Runes, which were initially designed with a speciĄc

card effect in mind – Prophecy, as discussed in section 2.3.3. However, without the

presence of this ability, this mechanic became signiĄcantly less impactful compared

to its original conception, while still contributing to the overall complexity of the

game.

3.2 Constructed Mode

The most signiĄcant and important change implemented in the project was the

introduction of Constructed Mode designed to replace Draft. In this mode, players

construct their entire deck at once, as opposed to gradually assembling it through

numerous small decisions. The aim is to incentivize the creation of more complex

decks and stimulate the development of more elaborate strategies.

In Constructed Mode, both players are presented with the entire pool of 120

cards generated for this game, utilizing the generation process described in the

chapter Chapter 4. From this pool, players must construct their decks. Each player

has the option to choose a single card twice, resulting in two unique copies with

distinct IDs. The deck size remains unchanged, at 30 cards.

https://playhearthstone.com/en-us/cards/69962-scavenging-hyena?set=classic-cards
https://playhearthstone.com/en-us/cards/69962-scavenging-hyena?set=classic-cards
https://playhearthstone.com/en-us/cards/69962-scavenging-hyena?set=classic-cards
https://en.uesp.net/wiki/Legends:Soul_Split
https://en.uesp.net/wiki/Legends:Soul_Split

3.3. AREA 23

The visualization of this phase is depicted in the picture below. Numbers dis-

played in the corners of the cards indicate how many times this card has been chosen

by the player with the corresponding color. Due to space limitations and the ex-

tensive number of cards, the list of available cards is divided into three frames to

accommodate them all. Consequently, supplementary and purely visual turns were

introduced to manage this aspect seamlessly. However, the mana curve visualization

positioned above and below the main board remains unchanged.

Figure 3.2: Constructed Phase

3.3 Area

There are some popular effects present in many CCGs. Among them, one allows one

to summon multiple Creatures at the same time using a single card, while another

involves Items that affect several targets simultaneously. Examples from TESL are

depicted in the picture 3.3 below. Notably, the design of the Scouting Patrol card

revolves around the mechanic of multiple lines, speciĄc to TESL. Cards like those

served as inspiration for the introduction of the new effect in version 1.5: Area.

This effect, while simple, has a signiĄcant impact on gameplay and addresses the

second part of the main problem of previous versions: the lack of more diverse

and interesting effects. Furthermore, it provided a valuable type of card: boardclear

which comprises Items capable of removing multiple weak Creatures simultaneously.

24 CHAPTER 3. CHANGES

(a) Scouting Patrol from
The Elder Scrolls:
Legends Source:

https://teslegends.pro/cards/

willpower/scouting-patrol-0/

(b) Fireball from The
Elder Scrolls: Legends
Source: https://teslegends.pro/

cards/strength/fireball-0/

Figure 3.3: Inspirations for Area

The Area effect can have three possible values: Target, Lane1, Lane2. Examples

of cards with these effects are shown in the graphic 3.4 below, with the value of the

Area represented by the black wave in the bottom part of the card.

Figure 3.4: Example cards with Area keyword. From left: Target, Lane1, Lane2

Cards with Target function exactly as before summoning and affecting only one

Creature.

For Creature cards with the Lane1 and Lane2 effects, multiple copies are sum-

moned when used. Lane1 creates two copies on the speciĄed lane, while Lane2 puts

one copy on each lane (with the argument corresponding to the target lane ignored).

Needless to say, the limit on the number of Creatures in each lane still applies, so

an additional copy is summoned only if there is space available. The possible effects

of Creature cards with the Area effect are illustrated in the picture 3.5 below, with

green arrows symbolizing Lane1 and blue arrows symbolizing Lane2.

https://teslegends.pro/cards/willpower/scouting-patrol-0/
https://teslegends.pro/cards/willpower/scouting-patrol-0/
https://teslegends.pro/cards/strength/fireball-0/
https://teslegends.pro/cards/strength/fireball-0/

3.3. AREA 25

Figure 3.5: Effects of Lane1 and Lane2 on Creature card

For the Items, this effect functions a little differently. A spell with Lane1 affects

all Creatures in the same lane as its original target, while Items with Lane2 affect

all Creatures on all lanes, (with the argument corresponding to the lane ignored).

Naturally, in both cases, Items only impact friendly or enemy Creatures, depending

on the type of the spell. Below, in picture 3.6, we can see which targets would

be affected by Items with Lane1 and Lane2 effect, with green arrows representing

Lane1 and blue arrows representing Lane2.

Figure 3.6: Effects of Lane1 and Lane2 on Item card

26 CHAPTER 3. CHANGES

Additionally, effects like cardDraw,myHealthChange, and opponentHealthChange

activate once for each time this card is triggered. Consequently, for Creatures, these

effects activate once for each summoned copy, while for Items they activate for each

impacted Creature. This further enhances the value of the Area effect.

3.4 Runes

Another change involves the removal of runes. As stated in the section 3.1, they

did not provide enough for the game. Their removal may initially appear straight-

forward, but it requires a series of smaller changes across various aspects of the

game.

First, of course, is the removal of the most obvious use of Runes. That is the

logic behind managing the triggering and detonating of a rune, as well as providing

a player with an additional card.

Additionally, runes were previously employed to resolve stalemates. When a

player drew their whole deck, consecutive runes would explode in successive turns

and set that player’s health to the corresponding value. To compensate for their re-

moval, we have replaced this mechanic with constant damage of 10 health points per

card the player is supposed to draw. This modiĄcation offers strategic depth, partic-

ularly beneĄting players who construct decks with emphasis on Drain, accumulating

this way signiĄcant amounts of health.

Another associated change involves the format of the input data. Input sent

to each player contained information about the number of still active runes for

both them and their opponent. Consequently, adjustments had to be made to all

the exemplary bots including the boss agent, to accommodate this revised input

format.

Lastly, the representation of runes in the user interface (UI) had to be removed

to align with their removal from the game mechanics.

Chapter 4

Generation

A signiĄcant change was connected with cards utilized within the game. It has been

decided to move away from a predeĄned list of cards employed consistently across all

games. Instead, a new approach was adopted – generating a unique set of cards for

each game. This process encompassed not only generating values for the cards but

also creating their corresponding images. This change was introduced to reinforce

the necessity of evaluating cards online instead of relying solely on oĘine ordering.

4.1 Card Generation

Our card generator mechanism utilizes three types of Random Generators:

• WeightedGenerator – this generator employs a typical uniform distribution to

select one object from a set of possibilities, each with a weight assigned

• NormalGenerator – uses the normal distribution to produce a random number

• ShuĘeGenerator – it randomizes the order of a provided list through shuĘing

The process of generating a card takes place in several fazes. To start with, we

determine the mana cost of the new card using the WeightedGenerator with possible

values ranging from 0 to 12. By default, all weights are equal. Next, we employ a

similar generator to choose the card type.

In the subsequent step, we use ShuĘeGenerator to shuĘe all the remaining

properties, apart from attack and defense. Afterward, we attempt to add them

until we exhaust the pool of candidates or reach the budget limit for the new card.

Following this, we allocate the remaining budget to determine the attack and defense

values. This is accomplished using the NormalGenerator with a mean of 1 and a

standard deviation of 2, shifted by the remaining mana.

27

28 CHAPTER 4. GENERATION

As a Ąnal, tweaking step, we align the values of attack and defense with the

type of card, following several rules:

• if either attack or defense is negative, it is set to 0,

• for Creature cards, the defense must be at least 1,

• for Blue Items, attack is set to 0 as it is disregarded,

• Red and Blue Items use exclusively negative numbers, hence we multiply their

attack and defense values by -1.

Each property is associated with two costs – additive and multiplicative. By

default, each of the generators utilizes only one of them, while the second one is set

to neutral value – 0 and 1 respectively.

Keywords are treated differently in their generation process. It is done in two

stages – Ąrst, we determine the number of Keywords to add, similar to the mana

selection process. Next, we shuĘe the Keywords and systematically attempt to add

them to the new card. If budget constraints prevent the addition of all Keywords,

we conclude this phase without Ąlling all available slots.

Although the default mode for selecting the set of cards for a game is now to

generate them dynamically, sometimes it is useful to have the ability to use the

card set created in advance. For this reason, there has been added possibility of

specifying a Ąle with such a set to use.

4.2 Example of Generation

In the picture 4.1 we can see an example card generated using our generator. We

will now use it to go through the generation process:

1. Initially, typeGenerator provided us with a Red Item (probability for Crea-

ture:40%, every color of Item:20%).

2. Then, the manaGenerator selected a cost of 10 mana (with uniform probability

for values [0-12]).

3. Following this, the ShuffleGenerator within the propertyOrderGenerator

provided us with the order of properties [area, oppHealthChange, Keywords,

draw, myHealthChange].

4. The areaGenerator choose an Area value of Lane1, reducing the budget to 7

mana (with probabilities Target :50%, Lane1 :25%, Lane2 :25%).

5. The oppHealthChangeGenerator choose 0, leaving the budget unaffected at

7 mana (probability for 0:50%, -1:25%, -2:12.5%, -3:12.5%).

4.2. EXAMPLE OF GENERATION 29

6. The keywordsGenerator chose 4 as maximum number of Keywords to add.

Utilizing the shuffleGenerator, it determined that the initial 4 Keywords to

consider were Ward, Lethal, Charge, and Guard. These Keywords collectively

consumed 4 mana, leaving us with 3 mana.

7. The drawGenerator provided us with +2 draw, depleting the budget to 2 mana

(with probability for 0:48.8%, +1:24.4%, +2:12.2%, +3:12.2%, +4:2.4%).

8. The myHealthChangeGenerator selected a value of +3, reducing the remaining

mana to 1 (probability for 0:50%, +1:25%, +2:12.5%, +3:12.5%).

9. The attackGenerator and defenseGenerator yielded values of 2.2077343103493865

and 1.6360940146843843 respectively (from normal distribution with standard

deviation 2 and mean 1). Following the adjustment by the remaining budget

and rounding down, we obtained values of 3 and 2. Since the new card is

categorized as a Red Item, these values were multiplied by -1, resulting in Ąnal

values of -3 and -2.

Figure 4.1: Example card generated using new generation method

In picture 4.2, we observe an example set generated through the described

procedure. As we can see, it has produced a varied array of distinct cards.

30 CHAPTER 4. GENERATION

Figure 4.2: Example card set generated using new generation method

4.3. GENERATION CONFIGURATION 31

4.3 Generation Configuration

Naturally, hardcoding all the values dictating the card generation process would

complicate potential experiments with speciĄc types of card sets. To enhance acces-

sibility, all the steering values are extracted from a designated Ąle cardWeights.json,

allowing for easy modiĄcation. In the picture 4.3 we can see part of the default

conĄgurations for different generators.

"typeProbabilities": {

"creature": 0.4,

"itemGreen": 0.2,

"itemRed": 0.2,

"itemBlue": 0.2

},

"areaProbabilities": [{

"name": "target",

"weight": 50,

"multCost": 1,

"addCost": 0

}, {

"name": "lane1",

"weight": 25,

"multCost": 0.7,

"addCost": 0

}, {

"name": "lane2",

"weight": 25,

"multCost": 0.6,

"addCost": 0

}

],

"bonusAttackDistribution": {

"mean": 1.0,

"std": 2.0

}

Figure 4.3: Fragment of default cardWeights.json

4.4 Card Images

The next part of the game to be changed was the images of the cards. Before, each

card had its own picture, assigned forever.

But that approach works well only with the original card set. Especially, adding

new cards was awfully complicated, as each new card would require a new image. It

32 CHAPTER 4. GENERATION

got even worse when we changed from a pre-deĄned set of cards to generate a new

set for each game.

Because of this, we had to change the way of assigning pictures to cards. Now,

we will reassign images to cards at the beginning of each game. We will do so by

looking at the cards chosen for Constructed Mode and assigning different images for

each of them based on their ID and random offset.

However, then in each game, we would use exactly the same picture for com-

pletely different cards. We solve this problem by altering its appearance. To achieve

this, we add a colorful mask, rotation, and scaling. But we do not want to make

those adjustments entirely random, so we will base them on the statistics of the card

and its ID:

• We add three colored components for three main values of the cards: red for

the attack, green for the defense, and blue for the cost. The value of each mask

corresponds to the respective statistic. One can view an example of colors in

Ągure 4.4.

• Stronger cards should be bigger, so we scale the picture based on the sum of

the attack and defense of the card.

• We further alter the appearance of the card by adding a small rotation to the

picture. For this purpose, we calculate the angle as a hash of the statistic of

the card. Then, we choose the direction of rotation using the parity of its ID.

Together, those three adjustments give us quite a wide spectrum of diverse images,

as could have been seen in the picture 4.2 above.

4.4. CARD IMAGES 33

Figure 4.4: Example color masks

Chapter 5

Summary

Changes made for new version 1.5 have been overall successful.

The new version has been already used during the contest for COG 2022 without

major problems. The competition has been won by team ByteRL, with NeteaseOPD

in second and Inspirai in third place.

Most of the planned work has been accomplished, and there are only two pieces

missing. First, copies summoned by Creatures with the keyword Area have an ID

generated as biggest ID yet+1. It is unintuitive and requires the user to follow what

IDs have been used. It will be changed, so cards in decks will be given evenly spaced

out IDs, and additional copies will use numbers in between.

Second, cards generated by the generator are not well balanced. For example,

a spell with the Lane2 keyword costs 1.6 times more than one with the Target.

But it almost always will have several correct targets, making its value a lot higher.

Because of problems like that, weights and costs in the generator will have to be

rebalanced.

35

Bibliography

[1] Legends of code and magic: version 1.0 - feedback and strate-

gies from contestants”. https://www.codingame.com/forum/t/

legends-of-code-magic-cc05-feedback-strategies/. Accessed: 2024-03-

29.

[2] M. Campbell, A. Hoane, and F. hsiung Hsu. Deep blue. Artificial Intelligence,

134(1):57–83, 2002.

[3] CodinGame. Example game projects on github. https://github.com/

CodinGame. Accessed: 2024-03-29.

[4] CodinGame. Framework documentation. https://www.codingame.com/

playgrounds/25775/codingame-sdk-documentation/introduction. Ac-

cessed: 2024-03-29.

[5] CodinGame. Repository with framework engine. https://github.com/

CodinGame/codingame-game-engine. Accessed: 2024-03-29.

[6] CodinGame. Repository with game skeleton. https://github.com/

CodinGame/game-skeleton. Accessed: 2024-03-29.

[7] A. K. Hoover, J. Togelius, S. Lee, and F. de Mesentier Silva. The many ai

challenges of hearthstone. KI - Künstliche Intelligenz, 34(1):33–43, Mar 2020.

[8] J. Kowalski and R. Miernik. Legends of code and magic. ver-

sion 1.0. https://www.codingame.com/multiplayer/bot-programming/

legends-of-code-magic. Accessed: 2024-03-29.

[9] J. Kowalski and R. Miernik. Legends of code and magic.

version 1.2. https://www.codingame.com/contribute/view/

162759566f5a132f64b4de78ed637a2f309a. Accessed: 2024-03-29.

[10] J. Kowalski and R. Miernik. Main page of legends of code and magic. https:

//legendsofcodeandmagic.com/. Accessed: 2024-03-29.

[11] J. Kowalski and R. Miernik. Evolutionary approach to collectible card game

arena deckbuilding using active genes. In IEEE Congress on Evolutionary Com-

putation, pages 1–8, 2020.

37

https://www.codingame.com/forum/t/legends-of-code-magic-cc05-feedback-strategies/
https://www.codingame.com/forum/t/legends-of-code-magic-cc05-feedback-strategies/
https://github.com/CodinGame
https://github.com/CodinGame
https://www.codingame.com/playgrounds/25775/codingame-sdk-documentation/introduction
https://www.codingame.com/playgrounds/25775/codingame-sdk-documentation/introduction
https://github.com/CodinGame/codingame-game-engine
https://github.com/CodinGame/codingame-game-engine
https://github.com/CodinGame/game-skeleton
https://github.com/CodinGame/game-skeleton
https://www.codingame.com/multiplayer/bot-programming/legends-of-code-magic
https://www.codingame.com/multiplayer/bot-programming/legends-of-code-magic
https://www.codingame.com/contribute/view/162759566f5a132f64b4de78ed637a2f309a
https://www.codingame.com/contribute/view/162759566f5a132f64b4de78ed637a2f309a
https://legendsofcodeandmagic.com/
https://legendsofcodeandmagic.com/

38 BIBLIOGRAPHY

[12] J. Kowalski and R. Miernik. Summarizing strategy card game ai competition.

In IEEE Conference on Games, pages 1–8, 2023.

[13] R. Miernik and J. Kowalski. Evolving evaluation functions for collectible card

game ai. In International Conference on Agents and Artificial Intelligence,

volume 3, pages 253–260, 2022.

[14] R. Montoliu, R. Gaina, D. Perez Liebana, D. Delgado, and S. Lucas. Efficient

Heuristic Policy Optimisation for a Challenging Strategic Card Game, pages

403–418. 04 2020.

[15] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss.

A survey of real-time strategy game ai research and competition in starcraft.

IEEE Transactions on Computational Intelligence and AI in Games, 5(4):293–

311, 2013.

[16] T. Romstad, M. Costalba, J. Kiiski, and et al. StockĄsh: A strong

open source chess engine. https://web.archive.org/web/20220804024025/

https://stockfishchess.org/. Accessed: 2022-08-08.

[17] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-

tot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hass-

abis. A general reinforcement learning algorithm that masters chess, shogi, and

go through self-play. Science, 362(6419):1140–1144, 2018.

[18] R. Vieira, L. Chaimowicz, and A. R. Tavares. Reinforcement learning in col-

lectible card games: Preliminary results on legends of code and magic. In

Proceedings of the 18th Brazilian Symposium on Computer Games and Digital

Entertainment, SBGames, pages 611–614, 2019.

[19] R. Vieira, A. R. Tavares, and L. Chaimowicz. Drafting in collectible card games

via reinforcement learning. In 2020 19th Brazilian Symposium on Computer

Games and Digital Entertainment (SBGames), pages 54–61, 2020.

[20] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,

D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss,

I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S.

Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Mol-

loy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama,

D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu,

D. Hassabis, C. Apps, and D. Silver. Grandmaster level in starcraft ii using

multi-agent reinforcement learning. Nature, 575(7782):350–354, Nov 2019.

[21] W. Xi, Y. Zhang, C. Xiao, X. Huang, S. Deng, H. Liang, J. Chen, and P. Sun.

Mastering strategy card game (legends of code and magic) via end-to-end policy

and optimistic smooth Ąctitious play. arXiv preprint arXiv:2303.04096, 2023.

https://web.archive.org/web/20220804024025/https://stockfishchess.org/
https://web.archive.org/web/20220804024025/https://stockfishchess.org/

BIBLIOGRAPHY 39

[22] Y. Yang, T. Yeh, and T. Chiang. Deck building in collectible card games using

genetic algorithms: A case study of legends of code and magic. In 2021 IEEE

Symposium Series on Computational Intelligence (SSCI), pages 01–07, 2021.

	Introduction
	Collectible Card Game
	Popular CCGs
	Why it is interesting for Artificial Intelligence research
	CodinGame
	Framework
	Technical limitation

	Legends of Code and Magic
	History
	Research
	Rules
	Cards
	Mana
	Runes
	Draft Phase
	Battle Phase

	Communication

	Changes
	Problems
	Constructed Mode
	Area
	Runes

	Generation
	Card Generation
	Example of Generation
	Generation Configuration
	Card Images

	Summary
	Bibliography

